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Audio annotation is key to developing machine-listening systems; yet, effective ways to accurately and
rapidly obtain crowdsourced audio annotations is understudied. In this work, we seek to quantify the relia-
bility/redundancy trade-off in crowdsourced soundscape annotation, investigate how visualizations affect
accuracy and efficiency, and characterize how performance varies as a function of audio characteristics. Using
a controlled experiment, we varied sound visualizations and the complexity of soundscapes presented to
human annotators. Results show that more complex audio scenes result in lower annotator agreement, and
spectrogram visualizations are superior in producing higher quality annotations at lower cost of time and
human labor. We also found recall is more affected than precision by soundscape complexity, and mistakes
can be often attributed to certain sound event characteristics. These findings have implications not only for
how we should design annotation tasks and interfaces for audio data, but also how we train and evaluate
machine-listening systems.
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1 INTRODUCTION
Crowdsourcing is a powerful tool for developing large training and evaluation datasets for machine
learning in many domains, most markedly computer vision [10, 20, 28, 35, 37]. Many of the advances
in the development of computer vision algorithms can be attributed to training powerful machine
learning models on large image datasets such as ImageNet [10], which contains millions of images
annotated through crowdsourcing.

While crowdsourcing has also been used to gather data for learning problems in the non-speech
audio domain [5, 6, 23, 25, 26, 39, 41, 46], machine listening—the sibling field of computer vision—
has yet to see the same transformative success. This gap is in a large part due to the discrepancy
between the amount of training data available for visual and audio tasks. For example, many image
recognition systems are trained using ImageNet [10] which currently contains over 21,000 object
categories (i.e., synsets) and 14 million weakly-annotated labels, indicating the presence of objects,
and roughly 450,000 strongly-annotated labels, indicating the presence and location (e.g., bounding
box) of objects [42]. And state-of-the-art speech-recognition systems are trained on thousands of
hours of transcribed speech data [52]. In contrast, the largest strongly-labeled datasets for machine
listening contain approximately 10,000 events in less than 50 hours of audio [13, 31]. In recent
months, researchers have made progress on this problem by generating large numbers of weak
labels [3, 15] with minimal human oversight. However, it is unclear how well algorithms trained
on weakly-labeled data will perform in sound event detection (SED) tasks, where the goal is to
predict not only the presence but also the start (onset) and end (offset) times of each sound event.
Furthermore, a large, strongly-labeled dataset is essential for evaluation.

The problem of data scarcity is compounded by the fact that there has been little research into the
design of effective audio-annotation tools compared to other domains [8, 11, 19, 21, 22, 40, 48, 49].
Little is known about the impact of various design choices on the quality and speed of annotations
by non-experts. The design principles that work in other domains may not apply to audio annotation
tasks. For example, the temporal nature of audio tasks mean that annotators cannot simply listen
and label with a “glance-and-click" approach as in image annotation. While video annotation also
shares this temporal hindrance [19, 22, 40, 48], the challenge is not nearly as severe as videos
can often be described by sampling a small number of frames, making the process akin to image
annotation.

In addition, there has been little research into how the complexity and sound class composition of
acoustic scenes affect annotation performance, an issue that, despite receiving virtually no attention
in the literature, can potentially impact how we train and evaluate machine listening algorithms.

In this paper, we examine two factors—sound visualization (e.g., such as waveform and spectro-
gram) and acoustic characteristics (e.g., type and density of sound events)—and how they affect
the abilities of novices to perform audio annotation tasks accurately and efficiently. In particular,
we focus on sound event detection tasks, for which most algorithms require their training data
in the form of “strong" annotations of sound events that specify not only the class labels (e.g.,
“dog barking") but also the locations in time (i.e., onset and offset times) of the sound events. Our
experiments address the following questions:
(1) What is the trade-off between reliability and redundancy in crowdsourced audio annotation?
(2) Which sound visualization aid yields the highest quality annotations with and without taking

into account time constraints?
(3) What limitations can we expect from crowdsourced audio annotations as a function of

soundscape complexity and sound event class?
The answers to these questions provide insights into how one should design interfaces for crowd-

sourcing audio annotation tasks. In the process of answering these questions, we also raise new
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questions regarding the definition of ground-truth annotations and the sufficiency of a CSCW-based
approach which aggregates audio annotations from a population of users. Finally, our contribu-
tion also include Scaper[38], an open-source tool for synthesizing soundscapes and CrowdCurio
Audio-Annotator, a open-source, web-based tool for crowdsourced audio annotation.

2 RELATEDWORK
Sound visualizations in the form of spectrograms are very common in the expert annotation
of bioacoustic recordings [9, 36, 44, 47]. Often expert birdcall annotators do not even listen to
recordings. Instead, they learn to recognize specific visual patterns in spectrograms, allowing them
to annotate 24 hours of audio for one class of events (e.g., calls of a specific bird species) in about
one hour [44]. While impressive, it is unclear how such techniques scale to multi-label (i.e. multiple,
potentially overlapping sound events) annotation; they may require a separate pass for each class.

Sound visualizations have also been used in crowdsourced annotation with novices. In Whale.fm
[39], short recordings of whale vocalizations were presented with spectrogram visualizations, and
citizen scientist volunteers matched query whale vocalization to one of 36 candidate vocalizations.
However, participants’ use of the spectrogram was not evaluated, and it is unclear how this design
decision affected the resulting annotations.
There have been two studies that have investigated the use of spectrograms to hasten audio

annotation. Lin et al. [27] developed a saliency-maximized audio spectrogram to enable fast detection
of sound events by human annotators. They then conducted a study on the effect of this alternative
representation on audio annotation quality. In a within-subjects study, 12 annotators unfamiliar
with spectrograms labeled two 80-minute files using saliency-maximized spectrograms and two
using standard spectrograms. The investigators found a significant increase in F-score with the
saliency-maximized spectrograms. Unfortunately, speed and quality were confounded in their
analysis, and the investigators did not specify the sound classes of the events.
Truskinger et al. [45] investigated the ability of novices to rapidly visually scan spectrograms

for bioacoustic recordings similar to the process of experts [44]. In their study, they summarized
24-second soundscapes in the form of spectrogram flashcards. They presented the flashcards in
constant intervals of either 1, 2, or 5 seconds, and for each flashcard, participants indicated the
presence of the target sound class (koala vocalizations). In other words, it was a rapid, binary,
weak-labeling task and is similar to a later image annotation study [20] which tested even shorter
intervals. Truskinger et al. found annotators had equivalent accuracies at both 1 s and 5 s intervals,
but accuracy decreased at 1 s intervals. This is a very encouraging study that shows that novices
can learn the visual patterns of some audio classes. However, the Koala vocalizations were chosen
for their visual saliency and ease of detection, so it is unclear if this approach can generalize to
other audio classes.
Lastly, there have also been efforts to speed up the audio annotation using semi-automated

approaches [16, 18]. For example, Kim and Pardo [18] developed a human-in-the-loop approach
which sped up multi-label annotation two-fold.

In relation to these studies, our work takes a step back and questions assumptions that all of
these studies have made, asking at a more fundamental level whether waveforms, spectrograms, or
no visualization yields higher quality and faster annotations. We address this primary question
in a way that seeks greater generalization by investigating how sound classes and soundscape
complexity affect annotation performance. We also seek to understand the redundancy/reliability
trade-off in this crowdsourcing task, an important practical issue that has yet to be investigated.
Once we have greater fundamental understanding of this problem, we can then choose whether to
apply the additional optimizations investigated in these related works in an informed way.
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Fig. 1. A screenshot of the Audio-Annotator. Note that the numbered black squares are not part of the
interface; rather, they are labels for reference in Section 3.1.

3 TECHNICAL SETUP
In this section, we describe the tools and user interfaces used in our study.

3.1 Audio-Annotator: A Web-based Tool for Audio Annotation
To run our experiment, we needed a web-based audio-annotation tool designed for citizen scientists
that met the following design criteria:

• Support for configurable sound visualizations including waveform, spectrogram, and a blank
no-visualization control

• Support for multiple, overlapping time-interval audio-event annotations (i.e., strong labels)
• Annotations that do not impede the sound visualization yet clearly display onset and offset
times

• An intuitive design for specifying onset/offset times and sound classes
• Compatible with multiple backends for flexibility
• Open source to easily change the design for different tasks as needed

Existing web-based audio-annotation tools [12, 18, 36] did not meet these criteria. Therefore, we
developed an open-source audio-annotation tool by extending the popular WaveSurfer.js [17] audio
playback and visualization tool to meet our needs. This new tool, which we call the Audio-Annotator,
is illustrated in Fig. 1 and is built using JavaScript, HTML5, Web-Audio API, and the Materialize
CSS framework. The large, colorful, rectangular visualization (Label 1 in Fig. 1) in the middle of the
screenshot is the configurable sound visualization. The large scale and prominent placement of
the visualization was chosen to assist users in the cognitive process of detecting and identifying
sounds. In this example, we have configured it to display a spectrogram visualization (see Section 4.1
for descriptions of this visualization and the others used in the study). For all visualizations, the
horizontal axis represents time and the playback cursor moves from left to right. Users can play
the audio recording with either the play button (Label 2 in Fig. 1) below the bottom left corner
of the visualization or by pressing the space bar. The playback cursor allows one to relate the
audio to the visual cues. On the rectangular space occupied by the visualization, users create and
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edit their annotation region using a similar interaction paradigm as used in most Digital Audio
Workstations (DAWs) (e.g., GarageBand [1], ProTools [2], etc.). This includes the following scenarios
and interactions:

• Seeking to a specific time: Click the desired location in the x-dimension of the visualization.
When combined with space-bar-triggered playback, this interaction enables users to quickly
interact with the visualization while listening to set the onset and offset with fluid precision
techniques.

• Creating an annotation: Click and drag within the visualization rectangle to identify the
region in which a sound event occurs. This creates a corresponding annotation region bar
(Label 3 in Fig. 1) above the visualization.

• Deleting an annotation: Click on the “x" within the annotation’s region bar above the visual-
ization.

• Playing an annotation: Click on the play button that appears in the annotation’s region bar.
This button only plays that specific annotation region

• Selecting an annotation: Double-click on the annotation region bar. This displays the annota-
tion region’s bounding box (Label 4 in Fig. 1) on the visualization and enables the region to
be moved or resized.

• Moving an annotation: Click on the region bar of a selected annotation and drag it to the
desired temporal location.

• Resizing an annotation: Click on the left or right edge of a selected region’s bounding box
and drag the edge to the desired location. This is used to change the onset or offset of the
annotation, refining the annotation timing.

After a region is created or selected, it can be assigned a class. These classes are displayed in the
grid of buttons beneath the sound visualization. In Fig. 1, this grid is configured to contain both
sound event classes (e.g., jackhammer ; Label 5 in Fig. 1) and proximity classes (e.g., near ; Label 6 in
Fig. 1). Once a sound event class is chosen, it will appear in the corresponding annotation region
bar above the visualization. Once a proximity class is chosen, the coloring of the annotation region
bar is changed to correspond to the selected proximity class (red=near, blue=far, purple=not sure,
grey=not yet chosen).

TheAudio-Annotator is open-source and available for download at https://github.com/CrowdCurio/
audio-annotator.

3.2 CrowdCurio: A Research-based Crowdsourcing Platform
To host the Audio-Annotator and manage the experiment, we incorporated our interface into
CrowdCurio1, a research-oriented crowdsourcing platform [24, 50]. CrowdCurio is powered by two
key components: a Project Manager and an Experiment Manager. The Project Manager enables
researchers with little technical expertise to create crowdsourcing projects with a set of interfaces.
Similarly, the Experiment Manager provides researchers with the means to run A/B tests on projects,
coordinate the assignment of subjects to experimental conditions, manage logistical tasks typically
associated with online experiments (e.g., the completion of consent forms), and incorporate data
collection instruments (e.g., surveys and questionnaires). Additionally, this component enables
researchers to continually monitor and evaluate the quality of the data emerging from their
crowdsourcing projects. The platformmaintains a RESTful API, and both components are interfaced
with a Python API client that facilitates the management of projects, experiments, and crowdsourced
data.

1https://www.crowdcurio.com
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3.3 Scaper: A Soundscape Synthesizer
To reliably evaluate the influence of different interventions on the quality of human annotations,
we require highly controlled and perfectly annotated audio stimuli (soundscapes). First, we require
labels with precise start (onset) and end (offset) times for each sound event. Second, to evaluate the
influence of a soundscape’s acoustic characteristics on its annotation quality, we need to control
the types of sound events that occur in a soundscape and the degree to which they overlap. To
achieve this, we generated the soundscapes using Scaper2 [38], an open-source library we developed
to probabilistically synthesize soundscapes from a collection of isolated sound-event recordings.
Scaper provides high-level, probabilistic control over the number and types of sound events, their
start times, durations, and loudness with respect to a “background” track. The library outputs the
synthesized soundscape audio along with an annotation file.
From our own experience annotating soundscapes, we noted that it was harder to label sound

events accurately when a soundscape was complex, i.e. when it contained many, potentially over-
lapping, sound events. To evaluate this, we defined two complementary measures of soundscape
complexity: max-polyphony and gini-polyphony, where “polyphony” refers to the number of over-
lapping sound events at any given moment in time (excluding the background). Max-polyphony
is the largest polyphony observed in a soundscape. Our hypothesis is that when sound events
overlap it becomes harder to identify their sound class and harder to identify their precise onsets
and offsets, and so we expect a high polyphony to have a negative effect on annotation quality.
Gini-polyphony is intended to measure how “concentrated” a soundscape’s polyphony is—that is,
whether the polyphony is evenly distributed over time (e.g., idling engine and alarm sounds that
span the entire soundscape) or whether it is concentrated in a few points in time (e.g., the many
sounds of a traffic accident on a typically quiet street). To quantify this, we compute the sound
event polyphony at small, fixed, time intervals throughout the soundscape. With these polyphony
values, we calculate the Gini coefficient, a statistical measure of the degree of inequality repre-
sented in a set of values [53]. The coefficient ranges between 0–1, with zero representing maximal
equality (low soundscape complexity) and one representing maximal inequality (high soundscape
complexity). After synthesizing a soundscape, Scaper automatically computes its max-polyphony
and gini-polyphony, storing it in the annotation file.

4 METHODS
Our study followed a 3 × 3 × 2 between-subjects factorial experimental design in which we varied
the following factors:

(1) visualization: the sound visualization (no visualization (the control), waveform, or spectro-
gram)

(2) max-polyphony: the first measure of the soundscape complexity, binned into three levels
(described in Section 4.2)

(3) gini-polyphony: the second measure of the soundscape complexity, binned into two levels
(described in Section 4.2)

Each of the 18 different experimental conditions were randomly assigned and replicated by 30
participants for a total of 540 participants. For each condition, participants annotated a sequence of
10 soundscapes that were randomly synthesized under constraints to match the max-polyphony
and gini-polyphony levels of the condition. To mitigate any ordering effects, the presentation order
of the 10 soundscapes within each condition was counterbalanced using Latin squares.

2https://github.com/justinsalamon/scaper
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(a) Spectrogram and waveform visualizations of a 1.3 second long recording of
a person whistling. In the spectrogram, a clear horizontal line is formed at the
fundamental frequency of the whistle, clearly denoting a periodic sound. In the
waveform, the periodicity is not clear, but the onsets and offsets of the whistle are
still clearly defined.

Time (s)

A
m

pl
it

ud
e

Waveform Visualization

Time (s)

Fr
eq

ue
nc

y
(H

z)

Spectrogram Visualization

M
ag

ni
tu

de
(d

B
)

(b) Spectrogram and waveform visualizations of a 1.3 second long recording of a
person knocking on a door. In both visualizations, there are vertical lines clearly
denoting the onsets of the door knocks. However, the decay of the sound marking
the offset is clearer in the waveform visualization.

Fig. 2. Example visualizations.

Before running the full experiment, we tested and refined the Audio-Annotator interface and the
methods outlined in this section using both preliminary in-person user testing and a pilot study
with the crowdworkers until users could fluidly complete the experimental tasks.

4.1 Sound Visualizations
Sound visualizations are used to communicate acoustic information to a user through images. These
are often two-dimensional visualizations in which the x-axis is time and the y-axis measures an
application-appropriate variable. In multi-label sound-event annotation, users detect sound events
and then annotate the events’ onset/offset times and classes. In the signal of an audio recording,
sound events typically manifest as spectro-temporal energy patterns. To aid in the detection and
annotation of sound events, a sound visualization should help users detect these patterns. In our
experiment, we compared three common visualization strategies: waveform, spectrogram, and a
no-visualization control strategy.

4.1.1 Waveform. Waveform visualizations are likely the most common sound visualization,
and are typically used in audio/video recording, editing, and music player applications. They are
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two-dimensional visualizations in which the horizontal axis represents time, and the vertical axis
represents the amplitude of the signal. From Fig. 2, we can see that waveforms clearly visualize
the amplitude of a monophonic signal, but they make it difficult to parse audio-rate frequency
content of a signal, especially when viewing several seconds at time. In our experiment, each pixel
represents 12 ms of audio in the horizontal dimension and one of 256 amplitude levels in vertical
dimension. Note that while our audio stimuli were sampled at 44.1 kHz (i.e., a temporal resolution
of 0.023 ms), WaveSurfer.js achieves this ~500x reduction in temporal resolution using an algorithm
that preserves peak amplitudes. At this resolution, the waveform visualization displays the signal’s
amplitude envelope, which is representative of the short-term energy in a signal over time.

4.1.2 Spectrogram. Spectrograms visualizations are more commonly found in professional audio
applications. They are time-frequency representations of a signal that are typically computed using
the short-time Fourier transform (STFT). They are two-dimensional visualizations that represent
three dimensions of data: the horizontal axis represents time, the vertical axis represents frequency,
and the color of each time-frequency pair (i.e., a pixel at a particular time and frequency) indicates
its magnitude. In the spectrogram in Fig. 2, the colors on the yellow end of the spectrum represent
high magnitudes whereas colors on the purple end of the spectrum represent low magnitudes.
In Fig. 2 the spectrograms clearly decompose signals into their component frequencies, but fine
amplitude variations can be more difficult to decode in color encodings. This decomposition by
frequency likely makes it easier to detect events when multiple events overlap in time. In our
experiment, our spectrogram was calculated with a linear-frequency log-magnitude STFT with a
frame size of 12 ms, a hop size of 6 ms, and no zero-padding. With our audio stimuli sampled at
44.1 kHz, each pixel in the spectrogram represents the log-magnitude of an 84 Hz-wide frequency
band over a time duration of 12 ms.

4.2 Audio Stimuli
One of the potential applications of the Audio-Annotator tool is to annotate sounds captured by
an urban acoustic sensor network [34]. Therefore, we based the audio stimuli on soundscapes of
urban sound events related to traffic, construction and other types of human activity. We curated a
collection of 90 isolated sound events from several sound effects libraries [4, 14, 29], ten per each of
the following sound classes: car horn honking, dog barking, engine idling, gun shooting, jackhammer
drilling, music playing, people shouting, people talking, siren wailing. For the background, we used
Brownian noise rather than a real recording of urban “hum" to avoid the possibility that a real
recording could itself contain sound events and bias our experiment.
We synthesized 3000 soundscapes which were 10 s in duration and in which up to 9 sound

events were randomly chosen without replacement from the 90 events in our collection. The
signal-to-noise ratio of every sound event was chosen uniformly between 2–8 dB relative to the
background.We then assigned the soundscapes into 6 complexity groups: 3 levels of max-polyphony
× 2 levels of gini-polyphony. The max-polyphony levels were 0 (maximum polyphony of 1), 1
(maximum polyphony of 2), and 2 (maximum polyphony of 3–4). The gini-polyphony levels were 0
(gini-coefficient 0.5–1) and 1 (gini-coefficient 0–0.5). From the 3000 synthesized soundscapes, we
randomly selected 10 soundscapes per each of the six complexity groups, resulting in a total of 60
audio stimuli.

4.3 Procedure
After accepting the task and acknowledging consent, participants completed a hearing screening
(using the method described in [7]) to ensure they listened over a device with an adequate frequency
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response (e.g., not laptop speakers) and followed instructions. Participants were allowed two
attempts at passing the screening.
After the screening, participants were asked to complete a questionnaire on prior experiences

with sound technology, sound labeling, and music instruments.
Next, participants were shown an instructional video lasting a few minutes that explained how

to interpret the sound visualization they were assigned. The video also walked participants through
the both the annotation interface and task.
Once participants watched the training video, they began the sound annotation activity using

the Audio-Annotator tool. All participants first annotated the same practice soundscape of medium
complexity to familiarize themselves with the task. Then, participants annotated the sequence of
10 soundscapes assigned to them. They were instructed to label all of the sounds in the soundscape.
They could use as much time as they wanted to complete the task and could also refer to the
instructions and video as needed.
Lastly, participants were directed to a questionnaire on their demographics and reflections on

the annotation exercise.

4.4 Participants
We recruited 540 participants via Amazon Mechanical Turk. Participants were U.S. based with an
approval rate higher than 99 percent. For additional quality control, participants were also required
to pass a hearing screening as mentioned in the previous section. Each participant was assigned
to one experimental condition. The task completion times and payment were dependent on their
max-polyphony level. For max-polyphony levels 0, 1, and 2, the median completion times for an
individual annotation task were 0.91 (M=1.22, SD=1.39), 1.71 (M=2.36, SD=2.88), and 2.59 (M=3.51,
SD=3.97) minutes; and the payments were $3.26, $4.93, or $5.62 USD respectively. Payment values
were based on expected completion times as determined by a pilot experiment and a pay rate of
$7.25 USD per hour. To support differentiated payments based on max-polyphony, three separate
HITs were created which indicated in their descriptions that participants were only allowed to
complete one of the three HITs (CrowdCurio also enforced this constraint).

4.5 Quality Measures
To analyze our results we used several common binary classification measures: accuracy, precision,
recall, and F-score. However, in this multi-label, time-series annotation scenario, we use these
classificationmeasures on a frame-level as implemented in sed_eval [32] and as used in the Detection
and Classification of Acoustic Scenes and Events (DCASE) challenge [43]. Accuracy (A), precision
(P), recall (R), and F-score (F) are defined as:

A =
TP +TN

TP +TN + FP + FN
, P =

TP

TP + FP
, R =

TP

TP + FN
, F =

2 · P · R
P + R

(1)

whereTP ,TN , FP , and FN are the number of respective true-positives, true-negatives, false-positives,
and false-negatives. When calculating these measures on a frame-level, each soundscape is seg-
mented into non-overlapping, fixed-length (e.g., 100 ms) time frames, and a frame is considered
active if any portion of that frame overlaps with the time interval of an annotation. TP , TN , FP ,
and FN are then calculated in each frame independently for each sound event class.
The choice of the analysis frame size can greatly affect the results and should be chosen based

on the application. For sound event detection in noise monitoring, a 1000 ms resolution is adequate
for evaluation. However, for sound event detection in smart vehicles, a finer resolution is likely
needed. For reference, a frame size of 1000 ms was used in the most recent DCASE challenge [30].
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However, we opted for 100 ms frames in our analysis since we are concerned with detecting the
preciseness and limitations of human annotations.

To investigate the reliability and redundancy trade-off, we first examined the agreement between
the annotations of study participants. Not only does a measure of agreement give us an indication
of how clear the annotation task was, but it can provide insight into how many annotators are
required to establish a consensus of ground truth. To calculate agreement, we computed the mean
frame-level accuracy (using 100 ms frames) for all pairs of annotations for each condition:

aдreementc =
2

|Kc |(|Kc | − 1)
∑

i, j ∈Kc
Ac,i, j (2)

where c is the condition index, Kc is the number of participants for condition C , i and j represent
the indices of a pair of participants, and Ac,i, j is the accuracy score between the annotations of
participants i and j for condition c .
To investigate whether annotators agreed upon a correct annotation, we examined how the

number of annotators affects the quality measures of aggregate annotations in relation to the
ground truth annotation by simulating an increasing number of annotators for each condition. To
do so for each condition, we first shuffled the order of the condition’s 30 annotations, each of which
was contributed by a different participant. Then, starting with the first annotation, we progressively
added each of the 30 participants’ annotations, estimating and evaluating an aggregate annotation
at each step. To estimate an aggregate annotation, we converted annotations to their frame-based
time-series representation and marked a time frame as active only if at least half of the participants
marked it as active. For each additional annotator, this aggregate annotation was estimated and
evaluated against the ground-truth, resulting in a curve of quality as a function of the number of
annotators. To replicate different possible orderings of annotators, we then repeated this whole
process 30 times, each time with a different randomized order of annotators. This process was
performed on all conditions.

5 RESULTS
5.1 Reliability and Redundancy Trade-off
5.1.1 Participant agreement. The median agreement over all conditions was 0.93 (M=0.92,

SD=0.06). Our data did not conform to the assumptions of a classical ANOVA, therefore we per-
formed a non-parametric Aligned Rank Transform (ART) ANOVA [51] to investigate the effect of
visualization, gini-polyphony, and max-polyphony on agreement. We found that gini-polyphony
(F (1, 162) = 55.80, p < 0.001) and max-polyphony (F (2, 162) = 6.17 p < 0.01) had significant effects
on agreement, but visualization (F (2, 162) = 1.10, p = 0.31) did not. The interactions were not
significant. In Table 1, we see that gini-polyphony had the strongest effect on agreement. Therefore,
the sound visualization does not affect their agreement with each other, but the complexity of the
soundscape does—e.g., longer, overlapping sound events have a negative influence on agreement.
This suggests that more participants are needed to come to a consensus annotation for complex
soundscapes.

5.1.2 Estimated quality as we increase number of annotators. In Fig. 3, we plotted the mean
F-score for conditions as a function of the number of annotators with the simulated data described
in Section 4.5. From this graph, it seems that as we increase the number of annotators, we can expect
aggregate annotations that are on average more similar to the ground-truth annotations. While the
quality doesn’t converge over the 30 annotators, we do see a sharp rise in the first 5 annotators,
a soft-knee at around annotators 5–10, and a more subtle, linear increase from annotators 10–30.
The dotted lines in the graph identify the location at which 90% of the gain between the minimum
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Factor Level Median Agreement (95% CI)
visualization no-visualization 0.926 [0.918, 0.936]

waveform 0.936 [0.914, 0.944]
spectrogram 0.941 [0.930, 0.956]

max-polyphony level 0 0.946 [0.932, 0.959]
level 1 0.940 [0.926, 0.959]
level 2 0.918 [0.905, 0.930]

gini-polyphony level 0 0.948 [0.941, 0.960]
level 1 0.909 [0.884, 0.925]

Table 1. Participant agreement as calculated by mean pairwise accuracy. Note that chance agreement would
be 0.5.

5 10 15 20 25 30
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spectrogram

Fig. 3. Mean F-score of consensus annotations for conditions grouped by visualization as the number of
annotators is increased. Bands are the 95% CIs of the means. The dotted lines identify the location at which
90% of the gain between the minimum and maximum quality is achieved.

and maximum quality is achieved. From these plots, we can estimate an appropriate number of
annotators for a task. For example, these results indicate that there is minimal benefit of recruiting
more than 16 annotators regardless of visualization.

5.2 Effect of Visualization On AnnotationQuality and Speed
5.2.1 Quality of annotations without time limit. Since we did not limit the time to complete

an annotation task, the participants’ final annotations are reflective of the best annotations the
participants were willing or able to do regardless of the time spent—an estimate of the upper bound
on the quality of crowdsourced annotations with our interface, worker pool, and pay scale.
The quality of these annotations with respect to the ground-truth was quantified with the

information retrieval measures from Section 4.5 (see Fig. 4). However, these results are more
informative if we break the F-score into its precision and recall components. We calculated a one-
way ART ANOVA to compare the effect of the visualization on precision and recall, and we find that
while there was a significant effect of visualization on precision (F (2, 5397) = 211.48, p < 0.001),

3The box extends from the lower to upper quartile values of the data, with a line at the median and notches representing
the 95% CI around the median. Whiskers represents the range of data that extends an additional 1.5 ∗ IQR (interquartile
range) past the edges of a box. Flier points are the outlying data points past the end of the whiskers.
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Fig. 4. Final annotation quality in reference to ground-truth labels grouped by visualization. NV=no visualiza-
tion, W=waveform, S=spectrogram. Triangles indicate means. Median values appear above the plot.3
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Fig. 5. Annotation onset and offset deviations from ground-truth (e.g., дroundTruth − estimate) grouped by
visualization. NV=no visualization, W=waveform, S=spectrogram. Triangles indicate means. Median values
appear above the plot.3

there was not a significant effect of visualization on recall (F (2, 5397) = 1.60, p = 0.20). In a post-hoc
Tukey HSD test, we found that the differences in precision between all of the condition groups
were statistically significant at α = 0.05. The spectrogram had the highest precision, followed by
waveform and the no-visualization conditions.

To investigate this result further, we inspected how the onset and offset times of the annota-
tions deviated from the ground truth for the three visualization condition groups. We calculated
the difference between the ground-truth onset times and the annotated onset times for all an-
notated onsets within a ±1s error window of the ground-truth onset time, and we repeated this
calculation for offset times. From this analysis, we found that while on average the onsets in the
no-visualization conditions were aligned with ground-truth onsets (M=0.01, SD=0.15), the offsets
in the no-visualization conditions usually came after the ground-truth offsets (M=-0.1, SD=0.21)
(see Fig. 5). Onsets are typically associated with a peak in energy that makes them easier to detect
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Fig. 6. Annotation speed/quality in reference to ground-truth labels calculated as the area under the curve
(AUC) as time increases within an annotation task. NV=no visualization, W=waveform, S=spectrogram. Triangles
indicate means.3

acoustically, but offset times are often more ambiguous and difficult to estimate. We speculate that
annotators may be more conservative in their offset times, selecting a larger annotation region,
when they do not have a visual aid to help place them. We also note a clear impact of the visualiza-
tion on the variance of onset/offset times in the annotations (p < 0.001 for all pairs using a Levene
test with Bonferroni correction): the variance is largest with no visualization and smallest with
the spectrogram visualization. From the data, it seems that despite their clear representation of
amplitude, waveform visualizations in general do not aid in annotating onset and offset times more
precisely than spectrogram visualizations.

5.2.2 Quality of annotations as task time progresses. To investigate the speed and quality of
annotations, we used interaction logs to recreate the annotation state at one second intervals for the
first 5 minutes of each annotation task. However, since 96% of the annotations tasks took less than
five minutes, we extended or trimmed all annotations to five minutes for comparison. We calculated
F-score, precision, and recall at each time step for each annotation. We then jointly quantified the
quality and speed by computing the area-under-the-curve (AUC) for each annotation’s time-quality
curve (see Fig. 6).

We calculated one-way ART ANOVAs to compare the effect of the visualization on the precision
and recall AUCs. We found that with the AUCs there was again a significant effect of visualization
on precision (F (2, 5397) = 264.44, p < 0.001), and a post-hoc Tukey HSD test found statistically
significant differences between all three condition groups at α = 0.05. There was also a significant
effect of visualization on recall AUC (F (2, 5397) = 6.68, p < 0.01) unlike the lack of effect on final
annotation recall. In a post-hoc Tukey HSD test, we found that the differences in recall AUC were
only statistically significant at α = 0.05 with the spectrogram pairs. Therefore, the spectrogram
visualization not only leads to higher quality annotations than the other visualizations, it also leads
to high quality annotations more quickly.

5.2.3 Task learning effects. Since a spectrogram is a complex visualization that most people are
likely unfamiliar with, we investigated if it was helpful from the start, or if annotators learned how
to effectively use it over the course of the session. To that end, we compared the final annotation
quality measures as a function of the order in which the annotation tasks were presented to the
annotators.
In Fig. 7, we see a positive trend for the spectrogram as the presentation position increases.

Recall that the order of the soundscapes was counterbalanced so that any quality effects dependent
on the soundscape itself will be averaged out and not present in these plots. When broken down
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Fig. 7. Means (dots) and regression fits for F-score, precision, and recall of annotations as a function of the
annotation task’s presentation position. The error bars around the means and the error bands around the
regression fits are their respective 95% CIs.

into precision and recall, we see that all of the visualization conditions exhibit a positive trend in
recall as the presentation position increases, but only the spectrogram exhibits a positive trend
in precision as the presentation position increases. We calculated two-way, repeated measures
ART ANOVAs to test the effect of the visualization and presentation position on precision and
recall. As expected from our previous analysis there was a significant effect of visualization on
precision (F (2, 537) = 67.45, p < 0.001), but not recall (F (2, 537) = 0.15, p = 0.86). In addition,
there was a significant effect of presentation position on recall (F (9, 4833) = 4.12, p < 0.001)
but not on precision (F (9, 4833) = 0.37, p = 0.95), and neither had significant interaction effects
between presentation position and visualization. Therefore, while there visually appears to be a
learning effect manifested in precision when using a spectrogram, this is not statistically significant.
However, there is a significant trend in recall for all visualizations, which indicates that with
experience annotators improve at identifying sound events regardless of the visualization. This is
a very encouraging result since it implies that after a learning period, we can expect annotation
quality to be even higher.

5.3 Effect of Soundscape Attributes on AnnotationQuality
In this section, we limit our investigation to the spectrogram visualization for simplicity since
annotators generated the highest quality annotations with this visualization.

5.3.1 Soundscape complexity. The quality of an annotation is likely dependent on the com-
plexity of the soundscape and its component sound events. To develop a strongly labeled dataset,
it is important to establish what the limits of human annotations are for different soundscape
complexities.
We calculated two-way ART ANOVAs to test the effect of the two soundscape complexity

measures—gini-polyphony and max-polyphony—on the precision and recall of the final annotations
generated using the spectrogram visualization. For both factors and their interactions, we found
statistically significant effects on both precision and recall (p < 0.001 for all). In a post-hoc Tukey
HSD test (α = 0.05), we found significant differences between all 3 max-polyphony levels for
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Fig. 9. Spectrogram annotations’ onset / offset deviations from ground truth for each sound event class.3

recall, but only between level pairs (0,1) and (0,2) for precision. Fig. 8 shows that precision seems
to be overall more strongly affected by gini-polyphony than by max-polyphony, and that the
effect of the gini-polyphony is stronger when the max-polyphony is higher. This implies that it
is harder to precisely annotate soundscapes in which many overlapping events are concentrated
in time. That said, the variation in precision due to soundscape complexity is relatively small
(max-polyphony η2 = 0.074, gini-polyphony η2 = 0.061). In contrast, while recall is also affected by
both complexity measures and their interaction, it is more strongly affected by max-polyphony
(max-polyphony η2 = 0.22, gini-polyphony η2 = 0.029). The effect of max-polyphony is also overall
much greater in recall than in precision. This result is encouraging. It implies that even if annotators
are given complex soundscapes, the resulting annotations will be precise even if some sound event
annotations are missing.

5.3.2 Sound event class. The perceived onset and offset of a sound event within a soundscape
mixture may differ from ground-truth onset and offset times calculated by Scaper. Scaper’s ground-
truth onset and offset times are more closely correlated to the perceived onset and offset times for
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Fig. 10. Mean annotations for three soundscapes using 100 ms frame sizes. Solid line is mean. Dotted line is
the ground truth.

a sound event in isolation, but in a mixture sounds may affect the perception of each other through
masking phenomena [33]. For example, the sound of a car approaching and passing on a highway
has a very long rise and fall in amplitude with a brief period of high amplitude as it is passes. If
there are many other sound events also occurring, it may be difficult to precisely annotate the onset
and offset (i.e. beginning and ending) times of such a sound event.

To investigate these differences, we examined how the onset and offset times of the annotations
deviated from the ground truth for different sound event classes. These deviations were calculated
as we did earlier in Section 5.2.1. In Fig. 9, we see that the onsets are all centered around zero for
the sound event classes in our study. However, gun shooting annotations have offsets (M=0.16,
SD=0.086) that are strongly biased from the ground-truth offsets. A gun shot is a loud, brief sound,
but it can be accompanied by a long reverberation tail (i.e., a long acoustic decay). While this tail is
reflected in the ground-truth, the annotators may not be able to hear this long reverberation tail; it
may have been perceptually masked by other sounds.
In addition to small onset and offset errors, annotators may neglect to label a sound event or

may confuse it with another. We calculated the sound-class-dependent precision and recall using
both 0.1 s and 10 s (i.e. the entire soundscape duration) frame sizes for the spectrogram conditions
annotations. For numerical reasons, instead of calculating precision and recall for an individual class
on each annotation, we calculated the measures using the TP , FP , and FN counts over all of the
spectrogram annotations. At the 0.1 s resolution, we found that gun shooting has a low recall score,
as we expect from the large positive bias in the offset deviations. We also found that dog barking
has a low precision score, as we would expect from its large interquartile range and negative bias in
offset deviation. However, gun shooting also has a low precision score, which cannot be attributed
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to its positive bias in offset—it must be caused by other errors such as incorrectly labeling other
sounds as gun shooting.
When calculating precision and recall with a frame size of 10 s, we are essentially evaluating

the annotations as weak labels. At the 10 s resolution, precision scores lower than 1.0 indicate
that either annotators labeled a sound event that was not in the soundscape or they attributed
a sound event to the wrong class. And recall errors indicate that a sound event was missed or
labeled as the wrong class. At this resolution, dog barking precision is almost perfect, indicating
that much of the errors at the 0.1 s resolution were due to offset deviations. The precision score of
gun shooting is high at this resolution, but we observed a low recall for this class, which indicates
that annotators are missing or mislabeling many of the gun shooting events. Unfortunately, because
these annotations are multi-label not just multi-class, it is difficult to investigate these types of
confusions and missing labels (e.g., a confusion matrix is not applicable).
However, we can see an example of a missed gun shooting event in Fig. 10 where we plot the

mean annotations computed with a 100 ms frame size. Here it seems that the gunshot’s onset
co-occurred with car horn honking, which likely made it more difficult to detect. In another example,
we can clearly see confusion between jackhammer drilling and engine idling, both of which contain
pulsating engine noise. Lastly, the figure also shows how human annotators may segment very
precisely, in this case annotating segments of speech around brief pauses. When thresholded
at 0.5, the aggregate annotation would still be very similar to the ground-truth. However, the
relationship between the “ground-truth" and the human annotations for this example highlights
how the chosen frame size affects segmentation and could consequently affect the training and
estimated performance of a machine listening algorithm.

6 DISCUSSION AND CONCLUSION
In this work, we contribute to crowdsourcing research by extending the theoretical understanding
of, and establishing evidence-based design guidelines for, crowdsourcing audio annotations. Specif-
ically, we sought to (1) explore and quantify the trade-off between reliability and redundancy in
crowdsourced audio annotation; (2) identify which sound visualization aids lead to higher quality
annotations, with and without taking into account time constraints; (3) examine the limitations of
crowdsourced audio annotations resulting from soundscape complexity and sound event class. To
achieve these objectives we ran a between-subjects study using a factorial experimental design, in
which we varied two aspects of the annotation environment: the sound visualization aids presented
to human annotators and the complexity of soundscapes they were asked to label.
Overall, we found that more complex soundscapes resulted in lower annotator agreement and

that spectrogram visualizations are superior in helping to produce higher quality annotations at
lower cost of time and human labor. We also found that recall is more affected than precision by
soundscape complexity and mistakes can be often attributed to certain sound event characteristics
such as long acoustic decays.
The findings have practical implications for the design and operation of crowdsourcing-based

audio annotation systems:

• When investigating the redundancy/reliability trade-off in the number of annotators, we
found that the value of additional annotators decreased after 5–10 annotators and that 16
annotators captured 90% of the gain in annotation quality. However, when resources are
limited and cost is a concern, our findings suggest that five annotators may be a reasonable
choice for reliable annotation with respect to the trade-off between cost and quality.

• When investigating the effect of sound visualizations on annotation quality, the results
demonstrate that given enough time, all three visualization aids enable annotators to identify
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sound events with similar recall, but that the spectrogram visualization enables annotators to
identify sounds more quickly. We speculate this may be because annotators are able to more
easily identify visual patterns in the spectrogram, which in turn enables them to identify
sound events more quickly. We also see that participants learn how to use each interface
more effectively over time, suggesting that we can expect higher quality annotations with
even a small amount of additional training. From this experiment, we do not see any benefit
of using the waveform or no-visualization aids when participants are adequately trained on
the visualization.

• When examining the effect of soundscape characteristics on annotation quality, we found
that while there are interactions between our two complexity measures and their effect on
quality, they both affected recall more than precision. This is an encouraging result since it
implies that when collecting annotations for complex scenes, we can trust the precision of
the labels that we do obtain even if the annotations are incomplete. This also indicates that
when training and evaluating machine listening systems, type II errors should possibly be
weighted less than type I errors if the ground-truth was annotated by humans and vice versa
if the ground-truth was annotated by a synthesis engine such as Scaper.

• We found substantial sound-class effects on annotation quality. In particular, for certain sound
classes we found a discrepancy between the perceived onset and offset times when a sound is
in amixture andwhen a sound is in isolation (our ground-truth annotations).We speculate this
effect is caused by long attack and decay times for certain sound classes (e.g., “gun shooting")
and that the effect may also be present in other classes exhibiting similar characteristics
(e.g., “car passing”), which were not tested. Future research focusing on specific sound classes
would be needed to examine such sound class effects rigorously. For crowdsourcing systems’
design and operation purposes, these discrepancies could be accounted for in the training
and evaluation of machine listening systems by having class-dependent weights for type II
errors.

• Class-dependent errors also seemed to be a result of class confusions and missed detection
of events. We speculate that one possible solution to mitigate confusion errors would be to
provide example recordings of sound classes to which annotators could refer while annotating.
It is also possible that saliency maximization techniques such as the one proposed by Lin et
al. [27] could help reduce missed detection of events.

Future research may explore the use of other visual aids and their effect on annotation quality,
reliability, and redundancy. Our experimental design choices of waveforms and spectrograms
was based on current audio-industry standard practices, which are largely driven to fit the needs
of sound-savvy users whose perception of sound is different than those of the average crowd
worker. However, annotators’ sound perception and experience using audio systems may affect the
utility that different visualizations have for them. Furthermore, other visualizations not explored in
this study may be more suitable for non-experts. Future research in which alternative visual aids
are used and users’ experience with audio systems is accounted for and varied across conditions
can help determine the right fit between crowd workers’ audio experience and crowdsourcing
annotation tools. Future research may also investigate incorporating user-dependent annotation
aggregation methods, since it is likely that some users produce more reliable annotations than
others. In addition, future research may also explore alternative crowdsourcing workflows (e.g.
breaking the overall workflow into “find" and “verify" stages), a direction that has been shown to be
advantageous for other temporal domains such as video annotation [18]. Finally, in future research
we plan to further investigate the relationship of audio and visual stimuli in audio annotation tasks
and their connection to findings in studies of perception and cognition.
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The goal of this study is to establish best practices for evidence-based crowdsourced sound
annotation so that future researchers and practitioners can benefit from our work. While future
sound annotation needs may or may not require paid (vs. volunteer) crowd work, we chose the
paid crowdsourcing approach in order to achieve results quickly and with relative ease of screening
participants for past performance and location. We acknowledge that our findings may not be
fully transferable to a volunteer-based environment (e.g. citizen science), but we expect that the
findings presented here will not be affected much by differences between paid and unpaid settings.
Such differences are likely to impact annotators’ motivations and attrition rate, but we don’t have
reasons to believe that they would impact the efficacy of the visualizations and user interfaces
tested in our study.

Our class-dependent analysis and graphs of mean annotations (see Section 5.3.2) raise interesting
questions in regards to the definition of “ground truth" annotations. For example, at what time
delay do neighboring utterances or jackhammer knocks transition from being one event to separate
events? Can we use priming examples or exposure to others’ annotations to bias this transition
point? Also, should ground truth be defined by the limits of what can be perceived by humans or
should we strive to train our machines for super-human accuracy? While the aggregate annotations
of a crowd are more accurate than an average individual (see Section 5.1.2), if we strive for truly
super-human accuracy then our training sets will need to be synthesized or multi-modal in order
to incorporate information not perceptible by humans from the audio modality alone. The answers
to these questions are likely application-dependent (e.g. bioacoustic monitoring will have different
requirements than noise pollution monitoring), but they are important to consider when designing
an audio annotation system.
As a final note, we’ve released a dataset called the Seeing Sound Dataset which contains all

of the soundscapes, final annotations, and participant demographics. This dataset is available at
https://doi.org/10.5281/zenodo.887924.

Taken together, the findings of this study make an important step in implementing rigor to the
design and operation of crowd-based sound annotation systems, thereby making crowdsourcing a
more evidence-based practice. In doing so, we extend the growing body of literature on crowdsourc-
ing to incorporate a domain that has received little research attention so far, despite its importance
for other areas of research such as machine learning and urban informatics.
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