Seeing Sound: Investigating the Effects of Visualizations and Complexity on Crowdsourced Audio Annotations

Mark Cartwright¹, Ayanna Seals¹, Justin Salamon¹, Alex Williams², Stefanie Mikloska², Duncan MacConnell¹, Edith Law², Juan Bello¹, Oded Nov¹

New York University
University of Waterloo

Sounds of New York City

A cyber-physical system powered by an acoustic sensor network that aims to **monitor**, **analyze**, and **mitigate** urban noise pollution.

Audio Annotation of Sound-Event Detection

Research Questions

- Which sound visualization aid yields the highest quality crowdsourced audio annotations?
- What limitations can we expect from crowdsourced audio annotations as a function of soundscape complexity?
- What is the trade-off between reliability and redundancy in crowdsourced audio annotation?

The Audio Annotator

Configured with the spectrogram visualization:

github.com/CrowdCurio/audio-annotator

The Audio Annotator

Configured with the waveform visualization:

github.com/CrowdCurio/audio-annotator

The Audio Annotator

Configured without a visualization:

github.com/CrowdCurio/audio-annotator

CrowdCurio.

Fostering Curiosity Through Science.

crowdcurio.com

Scaper: Soundscape Synthesis

- Open source python library for soundscape synthesis (WASPAA 2017)
- github.com/justinsalamon/scaper

• 3 x 3 x 2 between-subjects factorial design:

 Soundscape examples: M0G0 M0G1

• 3 x 3 x 2 between-subjects factorial design:

 Soundscape examples: M0G0 M0G1

• 3 x 3 x 2 between-subjects factorial design:

 Soundscape examples: M0G0 M0G1

M2G0

• 3 x 3 x 2 between-subjects factorial design:

 Soundscape examples: M0G0 M0G1

• 3 x 3 x 2 between-subjects factorial design:

 Soundscape examples: M0G0 M0G1

- 10 s synthesized urban soundscapes (i.e. audio stimuli)
- Classes: car horn honking, dog barking, engine idling, gun shooting, jack hammer drilling, music playing, people shouting, people talking, siren wailing
- 30 replications / 540 participants from Mechanical Turk
- 10 soundscapes per complexity condition (i.e. max- x gini-polyphony pair)
- Counterbalanced ordering of soundscapes
- Ran on the CrowdCurio platform

Participant Tasks

- Hearing screening
- Pre-task questionnaire
- Tutorial video
- Practice annotation task
- Series of 10 annotation tasks
- Post-task questionnaire

Frame-based Evaluation

• Segment signal into 100ms frames.

GROUND TRUTH ANNOTATION

PARTICIPANT ANNOTATION

Frame-based Evaluation

- Segment signal into 100ms frames.
- Round the annotations to the outer frame boundaries

GROUND TRUTH ANNOTATION

PARTICIPANT ANNOTATION

Frame-based Evaluation

- Segment signal into 100ms frames.
- Round the annotations to the outer frame boundaries
- Count TP, FP, FN for each class and calculate precision, recall, F-score

GROUND TRUTH ANNOTATION

FN

FP

TP

Results

Effect of Visualization on Quality of Annotations

Spectrogram → higher-quality annotations

Effect of Visualization on Quality of Annotations

Effect of Visualization on Quality and Speed of Annotations

Spectrogram \rightarrow higher-quality and faster annotations

Effect of Visualization on Task Learning

Expect even higher quality annotations after learning period

Effect of Soundscape Complexity on Annotation Quality

Complex soundscapes \rightarrow expect precise but incomplete annotations

Effect of Number of Annotators on Aggregate Annotation Quality

16 annotators captured 90% of gain in annotation quality, but 5 annotators is reasonable choice with respect to cost/quality trade-off

Takeaways

- Spectrogram \rightarrow higher-quality and faster annotations
- Expect even higher quality annotations after learning period
- Complex soundscapes → expect precise but incomplete annotations
- 5 annotators is reasonable choice with respect to cost/quality trade-off

SONYC: <u>wp.nyu.edu/sonyc</u>

Audio Annotator: github.com/CrowdCurio/audio-annotator

Scaper: <u>github.com/justinsalamon/scaper</u>

CrowdCurio: crowdcurio.com

Data: https://doi.org/10.5281/zenodo.887924