
Seeing Sound: Investigating the Effects of
Visualizations and Complexity on Crowdsourced
Audio Annotations

Mark Cartwright1, Ayanna Seals1, Justin Salamon1, Alex Williams2,

Stefanie Mikloska2, Duncan MacConnell1, Edith Law2, Juan Bello1, Oded Nov1

1. New York University

2. University of Waterloo

�1

�2

Sounds of New York City 

A cyber-physical system powered by an acoustic sensor network
that aims to monitor, analyze, and mitigate

urban noise pollution.

Audio Annotation of Sound-Event Detection

�3

POLICE SIREN
6/22/2017 https://upload.wikimedia.org/wikipedia/commons/7/7e/Police_Car_Silhouette.svg

https://upload.wikimedia.org/wikipedia/commons/7/7e/Police_Car_Silhouette.svg 1/1

Input:

Output:

POLICE SIREN

Training Set

Research Questions

• Which sound visualization aid yields the highest quality crowdsourced audio
annotations?

• What limitations can we expect from crowdsourced audio annotations as a
function of soundscape complexity?

• What is the trade-off between reliability and redundancy in crowdsourced
audio annotation?

�4

The Audio Annotator

Configured with the spectrogram visualization:

�5

github.com/CrowdCurio/audio-annotator

https://github.com/CrowdCurio/audio-annotator

The Audio Annotator

Configured with the waveform visualization:

�6

github.com/CrowdCurio/audio-annotator

https://github.com/CrowdCurio/audio-annotator

The Audio Annotator

Configured without a visualization:

�7

github.com/CrowdCurio/audio-annotator

http://,

�8

crowdcurio.com

http://crowdcurio.com

@justin_salamon

�9

• Open source python library for soundscape synthesis (WASPAA 2017)

• github.com/justinsalamon/scaper
2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

SOUNDBANK

FOREGROUND BACKGROUND

EVENT SPECIFICATION

label ∈ {car_horn, jackhammer, …}
source file ∈ {1.wav, 2.wav, …}
source time ∈ {0}
event time ∈ N(5, 2)
event duration ∈ U(0.5, 4.0)
SNR ∈ U(6, 30)
pitch shift ∈ U(-3, 3)
time stretch ∈ U(0.8, 1.2)

TRIM

NORMALIZE

TRANSFORM

COMBINE

SELECT PARAMETERS

SOUNDCSAPE

INSTANTIATION

& GENERATION

Soundscape 1 Annotation 1

Soundscape 2 Annotation 2

Soundscape N Annotation N

Figure 1: Block diagram of the Scaper synthesis pipeline.

variants of existing soundscapes. Finally, Scaper is implemented in
Python, which means it does not require any proprietary software
(such as, e.g., Matlab) and is easy to integrate with popular ma-
chine (and deep) learning Python libraries such as scikit-learn [15],
TensorFlow [16] and Keras [17], as well as popular audio analysis
Python libraries such as Essentia [18] and Librosa [19].

In the next section we provide an overview of Scaper, including
design choices and functionality. Next, we demonstrate the utility
of the library through a series of experiments: first, we use Scaper
to generate a large dataset of urban soundscapes and evaluate state-
of-the-art SED algorithms, including a breakdown by soundscape
characteristics. Next, we describe how Scaper was used to gener-
ate audio stimuli for a crowdsourcing experiment on the accuracy
of human sound event annotations as a function of sound visual-
ization and soundscape characteristics. The paper concludes with a
discussion of limitations and suggestions for new use cases.

2. SCAPER

SED is based on the notion that sounds in a soundscape can be
broadly grouped into two categories: foreground sound events
which are salient and recognizable, and background sounds, often
regarded as a single holistic sound which is more distant, ambigu-
ous, and texture-like [20, 21, 22]. Scaper was designed with the
same paradigm in mind: a soundscape is generated as the summa-
tion of foreground events and a background recording. It is up to
the user to curate a soundbank (collection) of their choice and or-
ganize the sounds into foreground and background folders, with a
sub-folder for each sound class (label). As such, Scaper is content-
agnostic and can be readily applied to a variety of audio domains
including urban and rural soundscapes, bioacoustic recordings, in-
door environments (e.g. smart homes) and surveillance recordings.
A block diagram of Scaper’s synthesis pipeline is given in Figure 1.

A key building block of Scaper is the event specification. An
event specification stores all properties of a sound event that Sca-
per can control, namely: the event label (class), source file (i.e. the
specific sound clip to be used), the event duration, the source time
(i.e. when the event starts in the source clip), the event time (when
the event should start in the generated soundscape), the SNR with
respect to the background recording, the event role (foreground or
background), pitch shift (in semitones, does not affect duration)
and time stretch (as a factor of the event duration, does not af-
fect pitch). Thus, a soundscape is defined by a set of event spec-
ifications, which are grouped into a foreground specification (for
all foreground events) and a background specification. To define
a soundscape, the user specifies a desired soundscape duration, a
reference loudness level for the background, and then adds event
specifications. For every property in an event specification the user
provides a distribution tuple, which defines a distribution to sample

the property value from. The distributions currently supported in-
clude const (specifying a constant value), choose (randomly select-
ing from a discrete list of values), uniform, normal and truncnormal
(sampling from a continuous distribution), and additional distribu-
tions can be easily added. As such, the user has control over how
detailed the specification is: from precisely defining every property
of every event using constants to a high-level probabilistic specifica-
tion that only specifies a distribution to sample from for every event
property. Given the foreground and background specifications, the
user can generate infinitely many soundscape instantiations2.

An instantiated specification (i.e. with concrete values that have
been sampled for all properties) is then used as a recipe for generat-
ing the soundscape audio, where all audio processing is performed
using pysox [23]. One aspect of the generation that requires spe-
cial care is the handling of SNR values. In particular, simple peak
normalization does not guarantee that two sounds normalized to the
same level will be perceived as equally loud. To circumvent this,
Scaper uses Loudness Units relative to Full Scale (LUFS) [24], a
standard measure of perceived loudness used in radio, television
and Internet broadcasting. Thus, if an event is specified to have an
SNR of 6, it means it will be 6 LUFS above the background level.
Finally, Scaper saves the soundscape annotation in two formats: the
first is a simple space-separated text file with three columns for the
onset, offset and label of every sound event. This format is useful
for quickly inspecting the events in a soundscape and can be directly
loaded into software such as Audacity to view the labels along with
the audio file. The second format is JAMS [14], originally designed
as a structured format for music annotations, which supports stor-
ing unlimited, structured, file metadata. Scaper exploits this to store
both the probabilistic and instantiated specifications of every sound
event. This means that (assuming one has access to the original
soundbank) Scaper can fully reconstruct the audio of a soundscape
from its JAMS annotation. Scaper is open-source (see footnote 1)
and we encourage contributions from the community to improve the
library and implement new features.

3. THE URBAN-SED DATASET

To illustrate the utility of Scaper, we used it to generate a large
dataset of 10,000 ten-second soundscapes for training and evaluat-
ing SED algorithms. We used the clips from the UrbanSound8K
dataset [25], approximately 1000 per each of ten urban sound
sources (each clip contains one of the ten sources), as the sound-
bank. UrbanSound8K is pre-sorted into 10 stratified folds, and so
we use folds 1–6 for generating 6000 training soundscapes, 7–8
for generating 2000 validation soundscapes and 9–10 for generat-
ing 2000 test soundscapes. Soundscapes were generated using the
following protocol: first, we add a background sound normalized
to -50 LUFS. We use the same background audio file for all sound-
scapes, a 10 second clip of Brownian noise, which resembles the
typical “hum” often heard in urban environments. By using a purely
synthesized background we are guaranteed that it does not contain
any spurious sound events that would not be included in the anno-
tation. Next, we choose how many events to include from a discrete
uniform distribution between 1–9. Every event is added with the
same high-level specification: the label is chosen randomly from all
10 available sound classes, and the source file is chosen randomly
from all clips matching the selected label. The source time is al-
ways 0, to ensure we do not miss the onset of an event. The start

2For an example see: https://git.io/v9GGn

Scaper: Soundscape Synthesis

http://github.com/justinsalamon/scaper

Experiment

• 3 x 3 x 2 between-subjects factorial design:

�10

visualization max-polyphony gini-polyphony

NV

W

S

M0

M1

M2

G0

G1

• Soundscape examples: 
M0G0	 M0G1 M2G0	 M2G1

Experiment

• 3 x 3 x 2 between-subjects factorial design:

�11

visualization max-polyphony gini-polyphony

NV

W

S

M0

M1

M2

G0

G1

• Soundscape examples: 
M0G0	 M0G1 M2G0	 M2G1

Experiment

• 3 x 3 x 2 between-subjects factorial design:

�12

visualization max-polyphony gini-polyphony

NV

W

S

M0

M1

M2

G0

G1

• Soundscape examples: 
M0G0	 M0G1 M2G0	 M2G1

Experiment

• 3 x 3 x 2 between-subjects factorial design:

�13

visualization max-polyphony gini-polyphony

NV

W

S

M0

M1

M2

G0

G1

• Soundscape examples: 
M0G0	 M0G1 M2G0	 M2G1

Experiment

• 3 x 3 x 2 between-subjects factorial design:

�14

visualization max-polyphony gini-polyphony

NV

W

S

M0

M1

M2

G0

G1

• Soundscape examples: 
M0G0	 M0G1 M2G0	 M2G1

Experiment

• 10 s synthesized urban soundscapes (i.e. audio stimuli)

• Classes: car horn honking, dog barking, engine idling, gun shooting, jack
hammer drilling, music playing, people shouting, people talking, siren wailing

• 30 replications / 540 participants from Mechanical Turk

• 10 soundscapes per complexity condition  
(i.e. max- x gini-polyphony pair)

• Counterbalanced ordering of soundscapes

• Ran on the CrowdCurio platform

�15

Participant Tasks

• Hearing screening

• Pre-task questionnaire

• Tutorial video

• Practice annotation task

• Series of 10 annotation tasks

• Post-task questionnaire

�16

Frame-based Evaluation

• Segment signal into
100ms frames.

�17

GROUND TRUTH ANNOTATION

PARTICIPANT ANNOTATION

Frame-based Evaluation

• Segment signal into
100ms frames.

• Round the annotations
to the outer frame
boundaries

�18

GROUND TRUTH ANNOTATION

PARTICIPANT ANNOTATION

Frame-based Evaluation

• Segment signal into
100ms frames.

• Round the annotations
to the outer frame
boundaries

• Count TP, FP, FN for
each class and
calculate precision,
recall, F-score

�19

GROUND TRUTH ANNOTATION

PARTICIPANT ANNOTATION

TN TP FN FP

Results

�20

Effect of Visualization on Quality of Annotations

�21

NV = no-vis
W = waveform
S = spectrogram

Spectrogram → higher-quality annotations

Effect of Visualization on Quality of Annotations

�22

NV = no-vis
W = waveform
S = spectrogram

Effect of Visualization on
Quality and Speed of Annotations

�23

NV = no-vis
W = waveform
S = spectrogram

Spectrogram → higher-quality and faster annotations

Effect of Visualization on Task Learning

�24
Expect even higher quality annotations after learning period

Effect of Soundscape Complexity
on Annotation Quality

�25
Complex soundscapes → expect precise but incomplete annotations

Effect of Number of Annotators on
Aggregate Annotation Quality

�26

16 annotators captured 90% of gain in annotation quality, but

5 annotators is reasonable choice with respect to cost/quality trade-off

Takeaways

�27

• Spectrogram → higher-quality and faster annotations

• Expect even higher quality annotations after learning period

• Complex soundscapes → expect precise but incomplete annotations

• 5 annotators is reasonable choice with respect to cost/quality trade-off

SONYC: wp.nyu.edu/sonyc

Audio Annotator: github.com/CrowdCurio/audio-annotator

Scaper: github.com/justinsalamon/scaper

CrowdCurio: crowdcurio.com

Data: https://doi.org/10.5281/zenodo.887924

http://wp.nyu.edu/sonyc
https://github.com/CrowdCurio/audio-annotator
http://github.com/justinsalamon/scaper
http://crowdcurio.com
https://doi.org/10.5281/zenodo.887924

