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Sounds are at 90 dB!
e (It's really loud*!)
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Dog ot 60dB! (They're a little loud™ eut very gooa)
Siren is -80 dB! (It's ~silentl)
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Why source-specific sound level estimation?

e Urban noise pollution monitoring: estimating the loudness of specific sound
sources to aid in noise mapping and enforcement 1)

e Intelligent audio production: determine (relative) gain of instruments in audio
mixes and inform automatic mixing systems that mimic audio engineers 12

e Source localization: could also aid in distance estimation for sources in diverse
settings like wildlife monitoring and sound awareness technology

[1] Gloaguen et al., “Road traffic sound level estimation from realistic urban sound mixtures by non-negative matrix factorization,” Applied Acoustics, 2019.
[2] Ward et al., “Estimating the loudness balance of musical mixtures using audio source separation,” WIMP, 2017.
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The state of SSSLE

e SSSLE has been understudied compared to other machine listening tasks

e Most existing approaches require access to isolated sources which are hard to
reliably acquire in realistic recording scenarios

e Obtaining ground truth sound levels for sources is generally impractical or
infeasible in realistic settings

e No accounting for background noise and out-of-vocabulary sources that are
generally presentin recordings
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What if we just use source separation?
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e Perfect source separation - perfect SSSLE & 7o
e Oftenimpractical or infeasible to effectively train a fully-supervised deep source

separation model for the target application @
e Recent methods have been developed to require less supervision for deep source

separation ©

o  Weakly supervised: joint separation and classification (Pishdadian et al. ‘20)(3], (Kong et al. ‘19, ‘20)4, 5]

o Unsupervised: MixIT 6]

] Pishdadian, G.Wichern, and J. Le Roux, “Finding strength in weakness: Learning to separate sounds with weak supervision,” TASLP, 2020.
] Kong et al “Sound event detection and time-frequency segmentation from weakly labelled data,” TASLP, 2019.

] Kong et al., “Source separation with weakly labelled data: An approach to computational auditory scene analysis,” ICASSP, 2020

]

3
4
5
6] Wisdom et al., “Unsupervised speech separation using mixtures of mixtures,” ICML 2020 Workshop on Self-supervision in Audio and Speech, 2020.
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Methods




Weakly supervised source separation (Pishdadian et al. 2020)
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e Energy consistency: energy (in each TF-bin) from active sources should sum to mixture

e Classifier critic: separated (true) active sources should contain only that source type,

separated (true) inactive sources should not contain any relevant sources

e Training a reasonable source-separation is possible with only clip-level labels!
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Weakly supervised source separation (Pishdadian et al. 2020)
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Remaining concerns:

1. We aretraining the model for source separation, but we really care about SSSLE!

2. Westill need to account for background noise and out-of-vocabulary sources!

Our work attempts to address these two concerns

17



Connecting source separation to SSSLE

e Use the relationship between source separation and SSSLE to bridge the gap

e Observations:

o Sound level estimation can be formulated as enforcing global energy consistency
o Energy consistency terms are of the form: % || R” 1

e |dea: generalize these expressions
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e Different choicesof & = (A,Br,BRr) apply energy consistency at different
time-frequency resolutions



Parameterizing energy consistency
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Accounting for background

Sum of sources no longer adds up to the mixture, but what if it almost adds up to
the mixture?
|dea: Introduce an asymmetric margin to the active energy consistency loss to
allow for background and out-of-vocabulary sources

RIS = [[[R] [, = TFe]+ =R, N/

0 TF=

Residual

asymmetry allows for underestimating mixture energy
while penalizing overestimating mixture energy

Ensure residual “background” signal does not contain any in-vocabulary sources

+ .

background mask = complement of classifier should predict all
estimated source masks zeros for background
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Putting it all together!

relative importance
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Estimating sound levels
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Experiments




Data

e Start with synthetic dataset used by Pishdadian et al.

o 4 second mixtures (@ 16kHz) w/ sources sampled from subset of UrbanSound8K (7]
o train/valid/test: 50k/10k/10k mixtures

e Add backgrounds noise from city soundscapes recordings obtained from an urban
noise monitoring sensor network (SONYC)
o  SONYC-Backgrounds: https://doi.org/10.5281/zen0d0.5129078

e Create datasets from mixtures and backgrounds at -50/-20/0 dB LUFS
(weak/moderate/strong background), as well as and no background

24
[6] Salamon et al., “A dataset and taxonomy for urban sound research,” ACM Multimedia, 2014.


https://doi.org/10.5281/zenodo.5129078

Evaluation

e Maetric: absolute dBFS error: characterizes the sound level estimation error
e Compare with:

o Weakly supervised source separation (no augmentations)

o  Only energy consistency augmentations

o  Only background augmentations
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Baseline Comparison

e Both augmentations yield best improvements in up to moderate background
e However, strong background breaks energy margin assumptions

Baseline Comparisons
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Ablation studies




Ablation study: sound-level augmentations

e Multiple time frequency resolutions improve sound level estimation
e Best performance with at least 2 time-frequency resolutions and mel scale
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Ablation study: background augmentations

e Both the energy margin and residual background classification loss improve

performance in up to moderate background
e Background classification is important for the margin to be effective

Background Augmentation Ablation
Sound Level Estimation Performance

20 M Baseline
I Energy Margin
Energy Margin,
15 1 Residual Loss
0 & “ m

None Weak Moderate Strong
Background Presence

Absolute dBFS Error
w o

29



Estimating sound levels
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Future work

e Addressing fixed margin
e Better background modeling
e Open question: how to evaluate SSSLE for real recordings?
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In summary:

We extended weakly supervised source separation to more directly address
sound level estimation and to account for background, improving SSSLE
performance in up to moderate background conditions

New dataset: SONYC-Backgrounds (https://doi.org/10.5281/zen0d0.5129078)
SSSLE models can be trained from only clip-level class presence annotations
SSSLE is possible in practical scenarios!

Th a n k yo u I https://github.com/sonyc-project/weakly-supervised-sssle
n
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