MONYC: Music of New York City Dataset

Magdalena Fuentes¹, Danielle Zhao¹, Vincent Lostanlen², Mark Cartwright³, Charlie Mydlarz¹, Juan Pablo Bello¹

¹New York University, USA ²CNRS, Laboratoire des Sciences du Numérique de Nantes (LS2N), France ³Department of Informatics, New Jersey Institute of Technology

https://magdalenafuentes.github.io/
mf3734@nyu.edu

- Music is important in human cultures and is an integral part of urban soundscapes
- To make sense of these soundscapes, machine listening models should be able to detect and classify street music
- The lack of well-curated resources for training and evaluating models currently hinders their development

Motivation

MONYC recordings have low Signal-to-Noise Ratio (SNR), are picked up by the sensors at far-field distances (ranging from approximately ten to fifty feet), and have variant levels of noise from other sources present in the streets such as cars or people talking.

MONYC

Spatiotemporal sampling

Diverse sampling

Annotation

Audio acquisition Urban Sound Spatiotemporal and selection

Sensor years of audio data

Diverse sampling

Annotation

Spatiotemporal sampling

Diverse sampling

Annotation

5.8M

Spatiotemporal sampling

Diverse sampling

Annotation

Audio recordings in 2017, in 15 sensors, subsampled x3

https://github.com/sonyc-project/dcase2020task5-uststc-baseline

https://github.com/guilgautier/DPPy

- 1. Pre-selection of musical recordings (1.5k)
- Conflict solving З.

2. Annotation of genre, live vs. playback music, multi- vs. single- instrument, loud vs. quiet

Music genres and live music in MONYC

[1] D. Bogdanov, A. Porter, H. Schreiber, J. Urbano, and S. Oramas, "The AcousticBrainz Genre Dataset: Multi-label, and Large-scale," in Proceedings of the 20th Conference of the International Society for Music Information Retrieval (ISMIR 2019): 2019 Nov 4-8; Delft, The Netherlands.[Canada]: ISMIR; 2019. International Society for Music Information Retrieval (ISMIR), 2019.

- Top genre in MONYC is **hip hop**, unlike datasets such as • AcousticBrainz [1], where the genres with more appearances are rock or pop
- Most genres are play-backed, sometimes from cars passing, sometimes from shops, or speakers outside homes. The exception are two genres: jazz and drumming, which are both mostly live

Spatiotemporal information in MONYC

- More music clips towards the Summer months (June, July), considerably less in Winter (November, December and January)
- Genre appearance usually correlated with events, e.g. Celtic ٠ music in March due to St. Patrick's day
- Less street music at the beginning of the week, more on the • weekend

Spatiotemporal information in MONYC

• Spatial distribution of genres, Jazz is mostly live, so is concentrated around Washington Square Park

Music tagging: a small experiment

- We use an off-the-shelf music genre tagger musicnn [2]
- ROC-AUC score of 50%

Overall performance in MONYC is lower than in other datasets [3] (in the range of 90%), with a median

The model performed 8-12% worse in average in those recordings labeled with high interference of sources

[2] J. Pons and X. Serra, "musicnn: Pre-trained Convolutional Neural Networks for Music Audio Tagging," arXiv preprint arXiv:1909.06654, 2019. [3] M. Won, A. Ferraro, D. Bogdanov, and X. Serra, "Evaluation of CNN-based Automatic Music Tagging Models," arXiv preprint arXiv:2006.00751, 2020

Conclusions and future perspectives

- We present MONYC, the first-of-its-kind open dataset of music in urban settings
- MONYC opens the possibility to develop and evaluate machine listening models for the classification of street music
- Such models for the classification of street music offer the opportunity to dig into behavioral among others.

- https://magdalenafuentes.github.io/monyc/
- https://github.com/soundata/soundata

patterns related to human activities in urban, such as nightlife, festivals, street celebrations,

honke IIIaIINJi

