Few-Shot Drum Transcription in Polyphonic Music
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»  Apply few-shot learning to automatic drum transcription (ADT)

»  Qutperforms SOTA supervised ADT under fixed transcription vocabulary SCROLL

«  Supports open vocabulary ADT with a small cost of minimal human input \\’/

1. Motivation & Goal

« Current ADT systems have small and fixed transcription vocabulary

» Standard supervised learning requires a lot of data to expand the vocabulary
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Can we perform open vocabulary ADT

on any percussive sound with few data?

2. Method: Metric-based Few-Shot Learning

» Recognizing novel classes from very few labeled examples

*  Prototypical networks [Snell. 2017]

» Learn a discriminative embedding space

« Robust representation (prototype) for a novel class
based on few examples

» (Classification: finding nearest prototype

 Training objective: C-way K-shot classification

» EX: 5-way 2-shot
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- Episodic training: Sample different set of classes in each training episode

3. Proposed Paradigm: Few-Shot Drum Transcription

» (Glven a target percussion instrument and a music track:

Binary support set

* Target: few examples
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Polyphonic music track

Trained prototypical network + Minimal human input

= [ranscribe any percussion instrument

4. Experimental Design: Training

« Dataset; Slakh2100 [Manilow, 2019]
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5. Experimental Design: Evaluation

 Three real music datasets

» ENST-Drums (20 percussion inst.), MDB-Drums 27), RBMA13 (23)

» [ranscription vocabulary
» Fixed —18 percussion instruments

» Open — all percussion instruments within each dataset

» Target examples in the support set

» Randomly sample 8 target examples from each track to simulate human input

» Baseline: Supervised CRNN  [Vogl. 2018]

6. Results

Macro F-measure (0: bad, 1: perfect)

B CRNN, 18 percussion inst.
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»  Qutperforms supervised approach under fixed vocabulary setting

«  Supports open vocabulary ADT

»  Supports finer-grained class labeling and/or extended vocabularies

»  Future work: automatic and human-in-the-loop target example selection

Paper: bit ly/fewshotADT ~ Contact: &) wangyu@nyu.edu
Of%10 Qy-wang.weebly.com

Ofaf Q @yuwang_tw



https://arxiv.org/pdf/1909.08494.pdf
https://arxiv.org/pdf/1909.08494.pdf
mailto:wangyu@nyu.edu
http://y-wang.weebly.com
mailto:wangyu@nyu.edu
http://y-wang.weebly.com
https://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
https://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
https://ieeexplore.ieee.org/document/9054708
https://ieeexplore.ieee.org/document/9054708
https://arxiv.org/pdf/1806.06676.pdf
https://arxiv.org/pdf/1806.06676.pdf
http://bit.ly/fewshotADT
http://bit.ly/fewshotADT

