Who calls the shots? Rethinking Few-Shot Learning for Audio

Yu Wang¹, Nicholas J. Bryan², Justin Salamon², Mark Cartwright³, Juan Pablo Bello¹

¹Music and Audio Research Laboratory, New York University ²Adobe Research ³Department of Informatics, New Jersey Institute of Technology

1

Goal: Audio-Specific Insights on FSL

• Learn to recognize a new class based on only few examples (the support set)

Standard FSL

- 1. C-way K-shot classification
- 2. Single-label multi-class
- 3. Perfect support set

In this work

- 1. Few-shot continual learning
- 2. Multi-label multi-class
- 3. Different support set properties

Gain audio-specific insights on FSL

Experiments

- 1. Large in size: ~615k 1s soundscapes
- 2. Perfect annotation: Programmatically-mixed using Scaper
 - Foreground: Single-labeled short clips in FSD50k
 - Background: Brownian noise
- 3. Controlled acoustic properties: Polyphony, SNR
- 4. **Freely available** On Zenodo (see github.com/wangyu/rethink-audio-fsl)

Class split		Base		Novel-val	Novel-test
# Classes		59		15	15
Data split	Tr	ain Val.	Test	Val.	Test
# Clips	45	0k 65k	65k	17k	17k

- Disjoint sets of *base* and *novel* classes
- Train on base data only
- Evaluate on base & novel data

Experiment: Feature Extractor

- 3 different models: CNN-440k, CNN-6M, CNN-80M
- Pre-training

Experiment: Feature Extractor

- 1. Trade-off between overfitting base classes and generalizing to novel classes.
- 2. Pre-trained OpenL3 model: best novel performance

balance between base & novel classes

Experiment: Few-Shot Methods

- 3 few-shot methods
- Different number of support examples

Experiment: Few-Shot Methods

Experiment: Few-Shot Methods

- 1. n = 5: DFSL
- 2. n >= 10: LR
- 3. To minimize user labeling effort and runtime resources \longrightarrow DFSL + small n otherwise \longrightarrow LR + large n

Experiment: Support Set Selection

- Monophonic vs. Polyphonic
- High-SNR vs. Low-SNR
- n = 5

Experiment: Support Set Selection

1. If we know test sample characteristics: matching those in the support set

2. If not: select support examples with more complex acoustics characteristics

Recap

• Audio-specific recipe for few-shot continual leaning on multi-label classification

• Code, FSD-MIX-CLIPS dataset, FSD-MIX-SED dataset: github.com/wangyu/rethink-audio-fsl

Thanks! :)