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ABSTRACT

The COVID-19 pandemic had an unprecedented effect in human ac-
tivity and city landscapes. A very notorious transformation during
this period was the change in noise levels and patterns across cities.
Small scale studies have show this change in noise levels across dif-
ferent locations in the globe. In this work, we extend these studies
by using historical audio data from the SONYC sensor network de-
ployed in New York City. We exploit machine listening models to
understand not only noise levels but also patterns, by performing
a sound source presence analysis. Finally, we contrast our finding
from the acoustic data with noise complaints to better understand
the relationship between noise and our perception of it.

Index Terms— Sensor networks, machine listening, Covid-19.

1. INTRODUCTION

The COVID-19 pandemic had a profound effect on human activity,
causing an unprecedented halt on in-person activities and mobility
in general, which was reflected in empty and quiet streets across
the planet [1, 2]. One of the most notorious and noticeable impacts
that this unrivaled event had was the decrease in global noise levels
[3, 4, 5, 6]. This was even more apparent in mega cities like New
York City (NYC) [7], where “the city that never sleeps” was abnor-
mally quiet. Motivated by this unique and historic moment, many
studies discuss the COVID-19 lockdown driven differences in sound
pressure level (SPL) for different cities [8, 9, 10, 11, 12, 13]. Given
the difficulties of long-term noise monitoring, most of these studies
compare short-term noise measurements taken during the pandemic
to few data points previously collected at the same locations. The
dynamic and transient nature of urban noise requires longitudinal
monitoring to effectively capture its true characteristics over time.

In this work we present a preliminary analysis of a unique lon-
gitudinal noise dataset from the the Sounds of New York City or
SONYC project [14, 15]. This project has maintained an active net-
work of advanced noise sensors monitoring 24/7 for over 6 years,
SPL data as well as encrypted audio snippets, allowing for cutting
edge noise monitoring approaches to aid in a deeper understanding
of the urban noise delta over the COVID-19 lockdown period. The
temporal scale of the SONYC dataset provides an unrivalled baseline
of noise conditions at the sensed locations over a 4 year period.

In addition, we have the ability to investigate not only changes
in noise levels, but also changes in sound sources across the city
through the application of machine listening. Finally, we look into
noise complaints during this period and previous years to learn about
people’s perception of the noise levels during this unusual time.

∗This work was partially supported by NSF award 1544753.

2. SOUNDS OF NEW YORK CITY (SONYC) PROJECT
SENSOR NETWORK

The Sounds Of New York City (SONYC) project deployed a network
of over 55 low-cost, acoustic sensor nodes across NYC to facilitate
the continuous, real-time, accurate and source-specific monitoring
of urban noise [14]. The first sensor was deployed in May 2016 with
the network growing in size over a three year period. This network
was retired in June 2022, resulting in a vast and unique sonic dataset,
enabling large-scale analysis of urban noise activities to reveal never-
before-seen noise patterns across space and time. Cumulatively,
150 years of calibrated SPL data and 75 years of raw audio snip-
pets was collected from the sensor network. This data has been used
to identify longitudinal patterns and often overlooked occurrences of
noise pollution across urban settings [16, 17]. The majority of sen-
sors were mounted to window ledges and light poles in the Green-
wich Village and NoHo areas of Manhattan, NYC, with additional
clusters deployed in Midtown Manhattan, Downtown Brooklyn, the
Upper East Side of Manhattan, and the Corona area of Queens, with
specific locations shown in [15]. These include locations near parks,
thoroughfares, universities, and transportation hubs. Deployments
were always external and efforts were taken to mount the sensors
away from existing sources of noise at the building edge, for exam-
ple air conditioning units or vents. Care was also taken to ensure
the node has an un-occluded view of the street and is as far away
from main exterior walls as possible to reduce the artificial boosting
of measured SPL levels when too close to large hard surfaces. A
general rule of at least a one-block distance between sensor nodes
was adhered to, unless there was a point of interest close-by such as
a long term construction project or major roadway.

The majority of the sensors were mounted onto window ledges
at heights ranging between 15–25 feet. In practice, over long deploy-
ment durations the height difference between sensor nodes would
result in negligible SPL variations between the sensors ranging 15–
35 feet in height, as the most significant difference in absolute SPL
measurement between different sensors occurs when a noise source
is directly below the sensor for long periods of time. However, the
variation in deployment characteristics such as sensor height and
flat surface/pole based mounting will likely produce variable SPL
measurements between deployment types. This makes the sensors
more adept at measuring decibel change over time rather than di-
rectly comparing absolute SPL values across deployment types.

3. DATASET

For our analysis, we selected 11 sensors which actively collected
data from early 2017 through July 24, 2020, which includes keyIC
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events in NYC’s COVID response and recovery as indicated in Ta-
ble 1. Nine of the sensor were located in Manhattan and two were
located in Brooklyn. Each sensor collected two main types of data:
SPL values, and encrypted 10 s audio snippets. In this paper, we
use A-weighted SPL measured at 1 s intervals and audio snippets
recorded at random intervals at an average rate of 1 snippet per
minute. While we have data extending back to 2017, the target pe-
riod of our analysis is the five-month period from Feb. 24, 2020 (3
weeks before the first event, E0, in Table 1) to July 24, 2020. We use
historical data from 2017–2019 from the same period as a baseline
to which we compare the data in our five-month target period.

Table 1. Event IDs indicating status of New York City lockdown
and reopening

Event ID Event Date
E0 Schools closed 2020-03-16
E1 Bars/restaurants closed 2020-03-17
E2 New York State on pause 2020-03-22
E3 Construction halt 2020-03-28
E4 Phase 1 reopening 2020-06-08
E5 Phase 2 reopening 2020-06-22
E6 Phase 3 reopening 2020-07-06
E7 Phase 4 reopening 2020-07-19

4. THE SOUND OF A CITY IN LOCKDOWN

4.1. Measuring change in SPL

During our five-month analysis period, there were moments of what
seemed to be unprecedented quiet. To confirm this, we first com-
puted the average A-weighted SPL (LAeq) for each day for each
sensor in both the analysis and the historical-baseline periods. We
then averaged these values over sensors for each day and sorted the
1285 days of our dataset by increasing LAeq. The LAeq for the qui-
etest 50 days ranged 60.0–62.4 dB (4–6 dB lower than the the mean
daily LAeq of 66.5 dB in 2017–2019), and all but five of these days
occurred during the pandemic period. Of the remaining five days,
three were holidays (Thanksgiving 2018, Christmas 2018 and 2019),
when many residents travel to their family-home states, and the other
two were unusually quiet Sundays one of which was unusually cold
(Feb. 17, 2019) and one which was not (Mar. 17, 2019).

To further understand the effect the city’s COVID-19 response
on noise levels, we performed a linear regression analysis using the
daily sensor LAeq measurements as the dependent variable. To ac-
count for the seasonal characteristics of the city, we included cat-
egorical regressors coding the day of the week and month of the
year. Given the non-COVID-related factors that seemed to influ-
ence the 50 quietest in our dataset, we also included a regressor in-
dicating if the day was an official city holiday and weather-related
regressors: mean daily precipitation (mm) and mean daily tempera-
ture (C). To account for the location differences of our sensors, we
also included categorical regressors encoding sensor ID. Lastly, we
encoded the stage of NYC’s COVID-19 response as a categorical
regressor, i.e. the time period between E1 and E2, the time period
between E2 and E3, etc. The regression was statistically significant
(Adjusted R2 = 0.736, F (38, 12039) = 885.3, p < 0.001). Ta-
ble 2 lists the primary regression variables of concern, along with
their standardized coefficient estimates and standard error. All but
one of the regressors is statistically significant (p < 0.001). By
comparing the standardized coefficients, we can see how the differ-

ent stages of the city’s COVID-19 response affected the noise of the
city, with a dampening effect increasing up to and including when
construction was paused, and then decreasing as the city began re-
opening. The strength of these effects for the states between the
time bars/restaurants closed and Phase 2 of the city’s reopening were
stronger than that of an official city holiday, precipitation, and tem-
perature. It is worthwhile to note that Sundays are particularly quiet
in the city (standardized coefficient of −2.064), but the quietest pe-
riod was even quieter than Sundays.

Table 2. Standardized coefficients of linear regression modeling
daily LAeq. Not showing seasonal (month of year, day of week)
and sensor ID variables due to space. N = 12078; R2 = 0.736
’***’ indicates p < 0.001

Variable Estimate Standard Error
City holiday -1.883*** (0.136)
Precipitation (mm) 0.443*** (0.050)
Temperature (C) 0.078*** (0.006)
E0 < t < E1 -0.864 (0.695)
E1 < t < E2 -2.294*** (0.318)
E2 < t < E3 -3.499*** (0.291)
E3 < t < E4 -4.147*** (0.094)
E4 < t < E5 -2.624*** (0.198)
E5 < t < E6 -1.758*** (0.193)
E6 < t < E7 -1.443*** (0.210)
E7 < t -0.942*** (0.320)

While our regression analysis investigates the factors that are
predictive of the daily-averaged LAeq, it does not give us insight into
the temporal patterns of the change in LAeq and how they evolved
over the course of the city’s response and reopening. To investigate
this, we built a simple averaged model of the spatiotemporal patterns
in our SPL data for 2017–2019, and we then compared our 2020 data
to this model. We first created such a model for each of the K = 11
sensors. To do so, we aggregated and downsampled each year of
SPL data per sensor into six LAeq values for each day, i.e., four-
hour intervals. We then aligned each of these yearly time series so
that they start on the same day of the week. Next, we stacked and
reshaped each sensor year of the 2017–2019 data into in a tensor
Xk ∈ R3×6×N where 3 is the number of years, 6 is the number
LAeq values per day, and N is the minimum number of days left in
the year (less than 365 due to the day-of-week alignment). We then
convolved this tensor with a 3× 1× 3 averaging kernel using a dila-
tion rate of seven in the third dimension (day). The result is a matrix
X̄k ∈ R6×N where each element in the matrix is an average of nine
values from the same four-hour interval (e.g., Monday, Noon–4pm)
consisting of the center point, 1 week in the past, and 1 week in the
future for 2017, 2018, and 2019. This averaging should give us a ro-
bust template of the temporal noise patterns for that sensor location.
We also created a resampled, aligned, and reshaped LAeq matrix for
2020, Yk ∈ R6×N . To compare how 2020 differed from 2017–2019,
we computed the difference between our 2020 noise matrix and our
2017–2019 matrix for each sensor (Yk − X̄k), and aggregated over
K sensors by taking the median difference for each interval-day bin.

The resulting diel plot in Figure 1B more clearly shows the drop
in LAeq during the city’s COVID response and reopening, with the
effect most pronounced after events E3 and E4 consisting of an ap-
proximately 4 dB drop during most times of the day. While there is
a negative change for all time intervals in the day, the change is not
uniform — there is a greater decrease in LAeq in the middle of the
day than there is at night. Lastly, the anomalous noise increases in
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(A)

(B)

(D)

(C)

Fig. 1. (A) Change in LAeq and complaint count in standard devia-
tions (SD) by day. (B) Change in LAeq in dB by 4-hour periods and
day. (C) Change in complaint count in SD by 4-hour periods and
day. (D) Product of (B) in SD and (C) in SD to visualize when co-
varying. The white dashed lines correspond to the events in Table 1
and the grey regions indicate time periods of missing data.

late May and early June indicate that noise city’s response to COVID
is not the only thing that affected the noise profile of the city during
our analysis period — these times correspond to protests in response
to the May 25th, 2020 killing of George Floyd by a police officer.

4.2. Measuring change in class presence

The city’s soundscape was disrupted not only because of the change
in noise levels, but also because of the change in presence of typical
sounds sources. To quantify this change, we performed a per-class
analysis of sound sources typically found in NYC. To that end, we
trained a multi-label multi-layer perceptron model on the SONYC-
UST 2.3 dataset [18]. The model has one hidden layer with 128
units and ReLU activations, as well as AutoPool [19] pooling on
the output. The audio of the dataset was recorded from the SONYC
acoustic sensor network and was annotated by both volunteers on
the Zooniverse citizen science platform [20] and experts from the
SONYC research team. The annotations of this dataset indicate the
presence of 23 classes that were chosen in consultation with the
NYC Department of Environmental Protection, organized into a tax-
onomy of coarse and fine classes. We focus on the coarse classes: en-
gine, machinery-impact, non-machinery impact, powered-saw, alert
signal, music, human voice and dog.

Our model consists of one hidden dense layer of size 128 and a
ReLU activation, followed by another dense layer of size 8 that in-
dicates the likelihood of each coarse class. The input of the model is
a pre-trained 512-dimensional OpenL3 embedding [21], which have
shown to be strong embeddings for sound event detection [21]. We
extract OpenL3 embeddings using a hop size of 0.5 seconds, which
results in 20 embeddings for each 10 s clip in our dataset, which are
processed by the dense layers in parallel. Finally, we aggregate the

model’s frame level mode predictions using AutoPool [19], result-
ing in one set of 8 likelihoods per excerpt. We use the training set
of SONYC-UST to train the model, which contains clip-level anno-
tations for the coarse classes. The presence of a given sound source
within an audio excerpt is then determined by thresholding the class
likelihood estimations. To do so, we select an optimal threshold for
each class using the validation set of SONYC-UST.

Using the same aggregation technique described in Section 4.1
for the SPL analysis, we compute one presence matrix per-sensor
per-class, summarizing the presence levels from 2017–2019 in
blocks of four hours, resulting in a matrix P c

k ∈ R6×N for each
sensor k and class c. We follow the same procedure for the class
presence in 2020, obtaining another set of matrices per-sensor per-
class Rc

k ∈ R6×N . To compute the change in presence, we compute
the per-class per-sensor difference (Rc

k − P c
k ) and aggregate over

sensors by computing the median of the differences of 2020 to each
one of the previous years. These diel plots are depicted in Figure 2.

Besides this intra-class presence comparison, we look at the
overall change in the soundscape by looking at the presence dif-
ference when we consider all the classes together. We do this by
stacking corresponding bins from all the classes from the P c

k ∈
R6×N matrices for each sensor, resulting in a set of matrices P̂k ∈
R6×8×N . We then compute the mean presence across bins from the
matrices corresponding to the period 2017–2019, and calculate the
overall change by computing the L1 norm between the 2017–2019
median presence matrix and the 2020 matrix in the axis correspond-
ing to the classes presence, see bottom plot of Figure 2.

Observing the diel plots in Figure 2, we notice a deep decrease of
presence across all classes starting near the first lockdown event, and
this decrease gets exacerbated after the pause of activities at the state
level and the halt in construction (E2 and E3). The bigger change for
all classes independently and combined was observed during work-
ing hours (8am-4pm), as expected given the reduction in activities.
The exception being a few classes for which the decrease included
the evening hours, such as human voice and alert signal. The de-
crease in alert signal was dominated by a decline in sirens during
this period, which mirrored the cease of mobility and presence of
people in the street. Not surprisingly, construction related sound
sources (e.g., impact sounds, power saw) had their bigger abate after
the construction halt. Lastly, an interesting pattern is shown in the
dog presence, which was the only source with an increase of pres-
ence during this period. One potential explanation for this is that as
people worked from home, they would walk their dogs more often
during earlier afternoon hours. A second is that dog barks were more
audible in the absence of significance traffic and construction noise.

5. A QUIETER CITY DOES NOT MEAN FEWER
COMPLAINTS

While our sensor data gives us an indication of how the noise
changed in the city, it doesn’t tell us how that change affected the
residents of the city. As a preliminary step in investigating this, we
used noise complaints to the the city’s non-emergency government
services contact point, 311. We downloaded 311 service requests
from Jan. 1, 2017 through July 24, 2020 through NYC OpenData
[22] and filtered them to complaint types related to general noise
and outdoor noise: Noise, Noise - Park, Noise - Street/Sidewalk,
Noise - Vehicle. We then performed the same steps as described
in Section 4.1 to create resample, align, and reshape, and average
2017–2019 noise complaint count data into a template to which we
compare the noise complaint counts that occurred in 2020. To get
a sense of the magnitude of this change, we re-scaled the change in
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Fig. 2. Change in class presence. The bottom figure visualizes the
L1 norm between distributions of presence for all the classes. The
white dashed lines correspond to the events in Table 1 and the grey
regions indicate time periods of missing data. The color scaling is
class-specific to highlight the temporal changes within a class rather
than compare across classes.

complaint counts in 2020 by normalizing by the standard deviation
of complaint counts in 2017–2019. Figure 1C displays the result of
this process as a diel plot, and Figure 1A displays the result of this
process as a line plot paired with a line plot of the change in LAeq,
which was also scaled by the SD of 2017–2019 data. For a more
detailed comparison of the change in LAeq to the change in noise
complaint counts, we plotted the product of their SD-scaled change
matrices in Figure 1D. From these plots, we can see the change in
complaints was very pronounced. After construction was halted in
the city (E3), we saw a reduction in complaints that followed the
same daily trend as the reduction in LAeq. However, in early- to

mid-may this trend shifts and noise complaints begin to increase,
diverging from LAeq and increasing at a rapid rate after the Phase 1
reopening (E4), peaking on June 21, 2020 with a peak change of 7.1
SDs. By looking at Figure 1C and D, we see that the change (both
decreases and increases) of complaints primarily occurred at night,
again correlated to the reduction in LAeq at night and then dramati-
cally shifting to an increase of complaints at night in May, diverging
from LAeq. While we can’t deduce the cause of this increase in
complaints from our data, we speculate that the return to outdoor
social activity in the summer along with the introduction of outdoor
dining came as a shock to complaining residents after the very quiet
lockdown. However, the data does shows that a quieter city does
not necessarily mean fewer complaints and calls into question the
relation of complaints to actual noise levels.

6. DISCUSSION & CONCLUSIONS

While the perceived quiet of the city during the COVID-19 lock-
down was very apparent to NYC residents, we have shown in Sec 4.1
the significant influence each lockdown stage had on objective ur-
ban SPL. The pausing of urban activity had an increasing impact on
these levels, with the construction halt providing the most reduction,
highlighting the major contribution this source has on urban noise.
With 90% of the 50 quietest days, measured by the SONYC sensor
network, occurring during the lockdown period, its impact is clear.

The pronounced daytime SPL decreases observed in the ∼2 month
period of full lockdown reveal the adaptation of NYC residents to
social distancing and work from home. With the May transition into
warmer Spring days, the reduced evening SPL change suggests that
residents were spending more time outside without the option of
convening inside bars or restaurants. This reduction in SPL change
continued through each reopening phase, however, measured SPL
levels in our study period did not reach pre-pandemic levels after the
fourth reopening phase.

With the lack of construction significantly contributing to overall
reductions in urban noise levels, the observed reduction in the pres-
ence of construction related sources (such as machinery impact, non-
machinery impact and powered saw) further confirms this. However,
the largest reduction in measured class presence is seen in human
voice. This class shows reductions in the order of 10x some other
classes, suggesting that human activity and thus social distancing
was followed by the majority of NYC residents, especially follow-
ing the New York State on pause (E2) event. The decreasing trend
of 311 noise complaints with SPL reduction give the impression of a
period of resident adaptation after construction halted, followed by
habituation to these quieter conditions. This appears to break down
when increased human activity on the streets (seen in the increased
human voice and music presence detections) in mid-to-late May pro-
duce a significant uptick in complaints for this type of noise source.

This work is not without its limitations though. The sensor loca-
tions are concentrated in a few neighborhoods. In addition, the ma-
chine listening models have a relatively small vocabulary that may
be narrowing the lens of our analysis, causing us to miss significant
yet unexpected sources of noise. Lastly, the models measure sound-
class presence, rather than level [23], which also may hinder our
analysis of the relationship of noise to complaints.

In summary, the unique dataset captured by the SONYC sensor
network in combination with the application of machine listening
has in this paper provided an initial set of observations into the noise
conditions of a city in lockdown. Each source of data helps to shed
light on a common story of significant change to urban acoustic con-
ditions and how the city’s residents responded to this.
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