
Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

CROWDSOURCING A REAL-WORLD ON-LINE
QUERY BY HUMMING SYSTEM

Arefin Huq Mark Cartwright Bryan Pardo

Northwestern University
EECS Department

2133 Sheridan Road
Evanston, IL 60208, USA

fig@arefin.net

Northwestern University
EECS Department

2133 Sheridan Road
Evanston, IL 60208, USA

mcartwright@u.northwestern.edu

Northwestern University
EECS Department

2133 Sheridan Road
Evanston, IL 60208, USA
pardo@northwestern.edu

ABSTRACT
Systems able to find a song based on a sung, hummed,
or whistled melody are called Query-By-Humming
(QBH) systems. Tunebot is an online QBH web service
and iPhone app that connects users to the desired re-
cording on Amazon.com or iTunes. Tunebot’s search-
able database is composed of thousands of user-
contributed melodies. Melodies are collected from user
queries, sung contributions and through contributions
from on-line play of an associated iPhone Karaoke
game: Karaoke Callout. In this paper we describe the
architecture and workings of the paired systems, as well
as issues involved in building a real-world, working
music search engine from user-contributed data.

INTRODUCTION
Music audio is one of the most popular categories of
multimedia content. Examples include the song reposi-
tories of Apple’s popular iTunes
(www.apple.com/itunes), the indie-music site CD Baby
(www.cdbaby.com) and Amazon (amazon.com). These
music collections are indexed by such metadata as title,
composer, and performer. Finding the desired recording
with this indexing scheme can be a problem for those
who do not know the metadata for the desired piece.

If the user has access to a recording of the desired audio
(e.g. it is currently playing on the radio), then an audio
fingerprinting system, such as Musiwave [1] or Shazam
[2] can be used. Such systems require the query exam-
ple be a (possibly degraded) copy of the exact recording
desired. This makes audio fingerprinting unsuitable for
any situation where the user is unable to provide a por-
tion of the exact recording sought (e.g. the song ended
on the radio before a search could begin).

Another approach is to identify a song based on enter-
ing its lyrics into a standard text-based search engine.
This is a relatively mature field with successful com-
mercial search engines (e.g. Google) already available.
It is not, however, applicable to pieces of music that
have no lyrics, or in situations where the user remem-

bers the melody but not the words.

In this work, we concentrate on the situation where the
user queries a system by singing or humming some por-
tion of the song (“What is the name of the song that
goes like this?”). Song identification systems that take
sung or hummed input are known as query-by-
humming (QBH) systems [3-4]. These are an example
of melodic search engines. Melodic search engines (in-
cluding QBH and rhythmic search) have received much
attention in recent years [5-14] and use a melodic frag-
ment as a query, entered as musical notation, through a
virtual piano keyboard or sung into a microphone.

Most published research in QBH has focused on the
matching algorithms and distance measures for melo-
dies. While this is important, there are other technical
and scientific challenges that must be surmounted to
build an effective QBH system ready for real-world
deployment. Example issues include: creation of a large
database of relevant search keys, handling large num-
bers of users, speeding search as the database goes from
hundreds to hundreds of thousands of melodies, and
updating the database and matching algorithms after
deployment in a seamless way.

Our solutions to these problems are embodied in Tune-
bot, an online QBH web service that connects users to
the desired recording on Amazon.com or iTunes. Tune-
bot’s searchable database is composed of thousands of
user-contributed melodies. Melodies are collected from
user queries, sung contributions and through contribu-
tions from on-line play of an associated Karaoke game:
Karaoke Callout. In this paper we describe the architec-
ture and workings of the paired systems, as well as is-
sues involved in building a real-world, working music
search engine from user-contributed data.

TUNEBOT
We embody our solutions to the problems of real-world
QBH in an on-line web service called Tunebot (tune-
bot.org). Tunebot lets the user search for music by sing-
ing a bit of it (with or without lyrics) as a query.

The system does not require hand-coded search keys,
since it automatically updates the database with new
search keys derived from user queries and contribu-

Copyright: © 2010 Huq, Cartwright, and Pardo. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

tions. To speed data collection and encourage collabora-
tive participation from the public, we integrate Tunebot
with an online social music game (Karaoke Callout)
that encourages collaborative tagging of audio with new
search keys [15]. Karaoke Callout is a Game With A
Purpose [16] that helps build our knowledge base of
songs. Users may also register with our website and
freely contribute sung examples in a manner similar to
the OpenMind initiative [17].

User Interaction

Tunebot is available as a web service and is currently in
beta testing as an iPhone application. The user interac-
tion in both the web and iPhone versions is identical:
1) Sing, 2) Choose. The user simply sings a portion of
the desired song to Tunebot. The system returns a
ranked list of songs. Each song is playable by a simple
click. While the song is playing, the system presents a
dialog box asking if this is the correct piece of music. If
the user clicks “yes,” the query is stored in our database
as a searchable example for that song. The user is then
connected to either Amazon.com or iTunes where the
music may be purchased. Figure 1 illustrates this inter-
action on the iPhone version of Tunebot. Figure 2 illus-
trates the Flash-based web interface for Tunebot.

Figure 1. Screen shots of the iPhone interface for
Tunebot.

Searchable Database Construction

Creating searchable keys that can be queried by singing
is non-trivial. Hand-keying a database with thousands
or millions of documents consumes prohibitive amounts
of effort, as does updating and vetting such a database
as music is created and tastes change. Thus, it is impor-
tant to develop good methods to create and vet percep-
tually relevant search keys for music audio that allow
the creation of a large music database indexed by musi-
cal content. This database must be expandable after
deployment so the system may search for new music
introduced as time goes by. For a system to scale, this
must be done with minimal training and minimal over-
sight by human operators.

We do not currently use existing MIDI files or extrac-
tion of melodies from the original polyphonic audio.
Automated transcription of polyphonic commercial
recordings is still not sufficiently robust to provide good
searchable melodies. The symbolically encoded data-
bases available to us do not provide the coverage of
modern pop, and rock tunes that our users tend to
search for. Further, as user tastes change and new songs
are released, a real working system must have the abil-
ity to constantly add songs to the database after de-
ployment. We address these issues by turning to the
users of the system for contributions.

Figure 2. Screen shot of the Flash-based web in-
terface for Tunebot.

The database for Tunebot uses searchable melodic keys
derived from a cappella performances contributed by
users as a result of playing Karaoke Callout, through
use of the Tunebot search engine, and by logging in as a
contributor and singing melodies to the system. Search
keys are encoded as described in the section Matching
and Encoding.

As of this writing, the Tunebot database contains rough-
ly 11,000 examples for over 3,100 songs. Nearly 900
songs have 5 or more examples associated with them,
and over 100 songs have 10 or more examples. The
database is constantly growing as users contribute new
songs and new examples for existing songs. To
illustrate the rate of growth of the database, 5,053 ex-
amples representing 1,017 new songs were added to the
database in the period from January 1, 2010 to April 15,
2010. At the current rate of growth, the size of the data-
base should more than double by the end of this year
compared to its size at the end of 2009.

System Overview

The Tunebot architecture is divided into three parts: (1)
the client, (2) the server-side front-end, and (3) the

Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

server-side back-end. These components are shown in
Figure 3.

Figure 3. An overview of the Tunebot system.

The client-side is most typically a web browser. In this
scenario, a Flash plug-in runs on the client side in the
browser to record the audio of user queries and contri-
butions and send it to the server.

The server-side front-end consists of two parts: (1) a set
of PHP scripts served by an Apache Web Server, and
(2) the Flash Media Server. The server-side front-end is
responsible for presenting the user interface to search
for and contribute songs, managing user information,
and passing requests and audio files to the back-end.
The iPhone client under development does not interact
with the Flash Media Server, instead communicating
with the server only through a PHP front end, as illus-
trated in Figure 3.

The server-side back-end is built around a Java servlet,
running in Apache Tomcat. The back-end implements
the matching algorithm and computes similarity rank-
ings of submitted queries. Both the front and back ends
interact directly with the SQL database on the server.

Encoding Melodies

Before a melodic comparison takes place, our tran-
scriber estimates the fundamental frequency of the sing-
ing every 20 milliseconds. The note segmenter then
divides this series of estimates into notes [18]. We en-
code all queries and all melodies in the database as se-
quences (strings) of note intervals. Each note interval is
represented by a pair of values: the pitch interval (PI)
between adjacent notes (measured in units of musical
half-steps) and the log of the ratio between the length of
a note and the length of the following note (LIR). Note
lengths are defined to be inter-onset-intervals. We use
note intervals encoded in this way because they are
transposition invariant (melodies that differ only in key
appear the same) and tempo invariant (melodies that
differ only in tempo appear the same)g. We represent a

melody X as a string of note intervals. The encoding of
a sung example into note intervals is illustrated in
Figure 4.

Figure 4. Pitch tracking and encoding of a sung
example. Dots are pitch estimates. Horizontal
lines are segmented notes. One note interval is
shown in the rounded square.

Measuring Distance Between Melodies

Equation 1 defines a simple metric between note inter-
vals x and y, with pitch intervals xp and yp and LIRs xl
and yl.

(1)

Here, a and b are non-negative weights chosen to opti-
mize performance on a set of example queries for a
given database of songs. Of course, when searching in
a melodic database, one is not comparing individual
note intervals, but full melodies. To compare melodic
strings, we use edit distance [19].

 The edit distance between two strings is the cost of the
least expensive way of transforming one string into the
other. Here, transformation cost (a.k.a. match cost) de-
pends on the comparison function for the individual
string elements described in Equation 1. We have a
fixed insertion/deletion cost of one, effectively forcing
the other parameters to be in these units.

This simple approach, when paired with a differential
melodic encoding like our note-interval representation
(this encoding is crucial to the use of such a simple note
metric), has been shown to produce comparable search
performance to more complex distance measures, with-
out the need to optimize many parameters [4].

Each song in the database is represented by one or more
sung melodies (search keys). A song’s ranking in the
search results is determined by the distance between the
query and the nearest search key for that song.

Direct comparison of the query to every melody in the
database becomes prohibitively slow as the size of the
collection increases. If the comparison function for
string elements is a metric (like Equation 1) then edit
distance can also be made a metric [19]. Placing data-
base melodies in a metric space allows efficient search

Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

of a melodic database using vantage point trees [20,
21].

Vetting the Database

When a user queries for a particular song (e.g.“Lola”),
we consider a search successful if the correct target
song is returned as one of the top answers. The closer
the target gets to number one, the better the system per-
formance. When a single search fails, it may be difficult
to tell exactly why. The query may be poorly formed
(singing “Hey Jude” when searching for “Lola”), the
search method may be ineffective for a particular user
(perhaps a user model needs optimization), or the indi-
vidual search key may not correspond well with what a
typical person would sing (storing only the verse when
people sing only the chorus). Maintaining a database of
past queries and their associated targets makes it possi-
ble to distinguish between cases and react appropriately.

Each row in Table 1 corresponds to a query made to a
search engine. Here, “Query Audio” is the recorded
singing, “Target Title” is the title of the correct target in
the database and “Target Rank” is the rank of the cor-
rect target in the results returned by the system. In this
example, every query by User 1 failed to place in the
top ten. This is an indication that the search engine is
not optimized properly for this user. Note also that
every query for “Hey Jude” failed to place within the
top fifty, regardless of user. This indicates a mismatch
between the target and the kinds of query example users
provide. This is in direct contrast to both “Que Sera
Sera” and “Lola,” each of which has one query whose
correct target was ranked first.

Table 1. Examples in a database

Our searchable database is composed of sung examples,
keyed to correct song titles. This lets us automatically
vet our search keys by using them as example queries.
Those targets with below-average search results can
then be tagged for search key updating. Such a database
also allows for principled, automatic improvement of
our similarity measures, as described in the section Sys-
tem Optimization.

System Optimization

Recall that searchable keys in the database are gener-
ated from past queries, sung contributions and examples
of singing from Karaoke Callout. Each sung example is
a potential new search key. The effectiveness of this
new key can be measured by rerunning saved queries
against this new key. This can be repeated using a key
based on each query (or even on the union of all que-
ries) and the best new key may then replace or augment
the original search key for a particular song. This allows
automatic, constant updating and improvement of the
database without need for expert intervention.

A primary measure our system optimizes is mean recip-
rocal right rank (MRRR), shown in Equation 2. The
right rank of a query is the rank of the correct song for
the query. We refer to the correct song as the target.
The mean right rank for a trial is the average right rank
for all queries in the set.

 (2)

We use MRRR because it gives more useful feedback
than the simple mean right rank. Consider the following
example. System A returns right ranks of 1, 1, 199, and
199 for four queries. System B returns 103, 102, 98, and
97. We prefer a system that ranks the correct target 1st
half of the time to one that ranks it around 100th every
time. Mean right rank returns a value of 100 for both
systems. MRRR returns 0.5 for system A and 0.01 for
system B.

When vetting search keys, one need only measure recip-
rocal right rank for each search key in the database.
When this falls below a given value, it becomes a can-
didate for removal or replacement, as described above.

Similarly, we use MRRR as the measure of the effec-
tiveness of a melodic similarity measure. We currently
use the simple edit-distance melody metric described in
a previous section because it allows the application of
vantage-point trees to speed search. This metric, how-
ever, does have tunable parameters that let us weigh the
relative importance of pitch and rhythm in melody
matching. Our system allows re-tuning of the weight of
such parameters after deployment, as the composition
of the database and the user queries shift over time [18].

The relative importance of rhythm and pitch are charac-
terized by the parameters a and b, respectively, in Equa-
tion 1. The rhythm weight is a, and b is referred to as
the pitch weight. We cannot know a priori what values
should be given to these parameters, so these values
must be determined empirically. It also seems natural to
wonder if different values would be appropriate for dif-
ferent individuals, depending on how accurate a given
individual’s singing is with regard to rhythm or pitch.

59 Hey Jude 3

39 Que Sera Sera 1

190 Hey Jude 1

21 Lola 1

233 Hey Jude 2

1 Que Sera Sera 3

1 Lola 2

Target
Rank

Target Title Query
Audio

User

Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

To explore these issues we first determined generally
applicable values for these parameters by optimizing
MRRR with respect to these parameters over a subset of
the database. This process yielded an optimal value of
0.5 for rhythm weight and 0.005 for pitch weight.
(These values only have meaning relative to the corre-
sponding units used in Equation 1.) These values were
set as the default parameter values of the system.

Next we collected a large number of labeled queries for
a set of four heavy users of the system (more than 512
queries per user) and computed MRRR over a wide
range of rhythm weight and pitch weight values. This
served two purposes: to validate our choice of default
parameter values, and to determine the importance of
tuning these parameters per user. Note that this second
set of queries, and the users who provided them, were
not part of the initial optimization of the parameter val-
ues and so this constitutes a proper validation. Table 2
contains an illustrative excerpt of the analysis.

User
Best

Rhythm
Weight

Best
Pitch

Weight

Best
Individual

MRRR

% MRRR
change from
best global

settings

1 0.400 0.00450 0.4760 +2.1%*
2 0.475 0.00450 0.4412 +0.9%*
3 0.525 0.00425 0.4065 +2.4%*
4 0.475 0.00500 0.3771 +2.4%*

Table 2. Optimal pitch and rhythm weights. Here, *
means not statistically significant.

Each row of the table shows the result of optimizing
MRRR with respect to rhythm weight and pitch weight
for the given user. In each case the optimization was
done over 512 labeled queries using a grid search with
17 points in each dimension and a granularity of 0.025
for rhythm weight and 0.00025 for pitch weight. This
gave a total of 289 parameter value pairs tried for each
user. The % change in MRRR is measured with respect
to the MRRR achieved using the default rhythm and
pitch weights learned from an earlier set of singers and
examples.

The values shown for MRRR are based on an early
2010 snapshot of our constantly-growing database of
real-world, user-contributed sung examples. For this
experiment, all contributions from the singer for whom
we optimize the values were removed prior to testing,
as were all anonymous contributions to the database.
This was done to ensure no contributions by the singer
in question were used as searchable targets. Therefore
the size of the test database depends on the number of
contributions by the singer in question. The MRRR
reported for User 1 was based on the largest resulting
data set (5302 contributions representing 1919 unique
songs). The data set for User 3 was the smallest (4556
contributions representing 1730 unique songs).

Several observations are possible from this table. The
parameter values that result from optimizing per user
are fairly close to the defaults learned from a large set
of earlier singers. The optimal rhythm weight is within
one grid point in three of four cases and the optimal
pitch weight is within two grid points in three of four
cases. More importantly, the improvement in MRRR
from optimizing these parameters is quite small. In fact,
it is less than 3% of the MRRR for each singer when
using the default global parameter values learned from
another set of singers. This difference is not statistically
significant when taking into account the variance of
MRRR on a random sample of 512 queries.

On the basis of this data and on similar analysis of other
users, we are confident that our empirically determined
global defaults for rhythm and pitch weights are valid
and robust across a wide range of users, in the context
of the current algorithm and the current composition of
the database. Given the robustness of the default set-
tings it appears that personalization in this parameter
space is not necessary. However, our system contains
several other parameter spaces and algorithmic choices
where the importance of personalization has not yet
been explored.

KARAOKE CALLOUT
In order to bootstrap the creation of a paired singing-
example/target database and encourage user participa-
tion, we take a page from recent work in participatory
and collaborative tagging. Particular inspirations in-
clude Open Mind [17] the ESP Game [16] and Karaoke
Revolution (a popular video game released by Konami
for the Sony PlayStation 2).

These examples have inspired us to cast system training
in the form of a prototype interactive, client-server kar-
aoke game: Karaoke Callout. This game closes the loop
between system use and system improvement by pro-
viding correct song labels for sung examples, so that we
can automatically vet and update a musical search en-
gine.

An initial prototype of this game was originally devel-
oped for Symbian-OS phones [15]. Since creating the
initial Symbian prototype, we have developed a new
iPhone version of the game that is in beta testing with a
small group of users. Those interested in becoming test-
ers or in receiving notification of the final release of the
game are encouraged to contact the authors of this pa-
per.

The Karaoke Callout Game Interaction

The flow of Karaoke Callout proceeds as follows.
Player 1 selects a song from our constantly growing
database and sings it into the phone. While singing, the
player is provided the lyrics to the song (Figure 5, step
1). If the player has the selected song in their iPod mu-
sic library, then they have the option to sing along as
the original recording plays.

Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

Once the player is done singing, the audio is sent to the
Tunebot music search engine, which rates the quality of
the singing by measuring how closely it resembles the
nearest melodic key for that song in the server database,
sending a score back to the user (Figure 5, step 2)

Player 1 may then challenge another person to beat their
score. If that person is a registered Karaoke Callout
user, Player 1 needs to only provide the callout recipi-
ent’s username, and they will be notified of the chal-
lenge via a push notification on their phone (Figure 5,
step 3). If Player 1 wishes to invite a new person to
play, they can select any email address (their phone
contact list is provided as a convenience) and a mail
will be sent to that person explaining how to install and
play Karaoke Callout.

Figure 5. Screen shots of the iPhone interface for
Karaoke Callout.

To accept the challenge, the callout recipient (Player 2)
sings the song, attempting to better the performance of
the challenger. The players are then notified of the re-
sults (Figure 5, step 4). This process may then be re-
peated, with either party selecting a new song with
which to “call out” the other party. Over the course of
an interaction, numerous examples of each party’s sing-
ing are created and stored in our database.

Karaoke Callout System Architecture

The game server (see Figure 6) is divided into three
main components. The first of these is the Karaoke

Server (written in PHP), which handles communication
with the clients, queries the Singing Scorer (our music
search engine) and stores sung examples in the data-
base. The final component is a SQL database of user
accounts, audio queries, scores, and challenges. In addi-
tion to our server, the Apple Push Notification Service
is also in the loop in order to communicate with the
users when the game is not running. The Singing Scorer
is modular and separate from the Karaoke Server, al-
lowing each component to be updated independently.
This is key for implementing automated system person-
alization and learning, as the Singing Scorer is the
search engine that we wish to optimize (Tunebot).

Figure 6. An overview of the KaraokeCallout system
architecture.

USAGE STATISTICS
An ongoing goal of the Tunebot project has been to
create a live, real-world system available to the general
public, containing a growing set of songs that are of
interest to a wide audience, and developed using data
that represents the queries that real users generate. The
usage statistics that follow were collected courtesy of
Google Analytics.

In the period from January 15, 2010 to April 15, 2010,
the Tunebot website had 15,421 unique visitors from
118 countries and territories. While more than three-
quarters of these visits are from the United States and
Canada, nearly 2,500 are from Europe and another
1,000 are from the rest of the world. The site receives
between 100 and 200 hits on a typical day, most of
which are new visitors. Figure 7 shows a breakdown of
visitors by country of origin for the top ten countries.

Tunebot currently has more than 70 users who have
chosen to register so that they may contribute songs to
the system. It is clear the vast majority of users cur-
rently use the system anonymously to perform queries.
We expect that broad dissemination of Karaoke Callout
should increase the proportion of registered users.

Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

Figure 7. Proportion of visitors to Tunebot, by country
of origin. Data collected over the period January 15 to
April 15, 2010 (out of a total 15,421 unique visitors).

ANALYSIS AND CHALLENGES
Because we are developing a real-world system, some
of our efforts have been directed at dealing with the
practical issues that arise in implementing such a sys-
tem, including robustness, scalability, efficiency, and
system responsiveness.

The median length of a user query is around 18 seconds
of audio, and our system currently takes about 5 sec-
onds to return results from the time the query is re-
ceived. For comparison, the longest query received to
date is around 48 seconds long, and our system cur-
rently takes about 13 seconds to return a response to
that query. The turnaround time is a function of several
factors, including the size of the database and the length
of the query, both in terms of the overall duration of the
audio and the number of notes the user has sung. In the
current implementation of the matching algorithm the
running time is O(kn), where k is the length of the query
in notes and n is the number of keys in the database.
While query lengths are not likely to change in the fu-
ture, the size of the database is expected to grow dra-
matically over time. Algorithmic optimizations such as
vantage point trees (discussed earlier) are one way to
deal with the increasing query turnaround time. Another
possibility, which we have implemented in our devel-
opment environment but not yet in the production sys-
tem, is to distribute the search algorithm across proces-
sors and compute matches in parallel. The potential for
parallelization to speed up QBH is illustrated in [22].

Profiling analysis of our system has shown that a major
portion of the query processing time is currently spent
converting the raw audio of the query to the internal key
representation, even though this phase of the algorithm
does not dominate asymptotically. Future work includes
exploring algorithmic and code-level optimizations to
improve the running time of this portion of the algo-
rithm.

A separate but related area of work has been to improve
the scalability of our system in response to growing and
fluctuating demand. This requires that the Tunebot serv-

ice run on multiple machines concurrently, while main-
taining a synchronized view of the database (so that, for
example, a newly contributed song will be visible im-
mediately to the user who contributed it). Cloud com-
puting is an appealing solution to provide online serv-
ices in a scalable and distributed fashion. We have de-
veloped a working prototype of Tunebot that is de-
ployed as a virtual machine image on the Amazon Web
Services cloud infrastructure.

MOVING FORWARD
We expect this work will lead to new insight into the
mappings between human perception, human music
production and machine-measurable features of music,
as well as leading to new approaches to automatically
tagging large databases of multimedia content, new
approaches to individualized search engines for im-
proved results and new approaches to speed multimedia
search.

ACKNOWLEDGEMENTS
We would like to thank the National Science Founda-
tion for funding to do this research. This work was sup-
ported by NSF Grant number IIS-0812314.

REFERENCES
[1] Haitsma, J. and T. Kalker. A Highly Robust Audio

Fingerprinting System. in ISMIR 2002. 2002.
Paris, France.

[2] Wang, A. An Industrial Strength Audio Search
Algorithm. in 4th International Conference on
Music Information Retrieval (ISMIR 2003). 2003.
Baltimore, Maryland, USA.

[3] Typke, R., F. Wiering, and R.C. Veltkamp. A
Survey of Music Information Retrieval Systems. in
ISMIR 2005: 6th International Conference on
Music Information Retrieval. 2005. London,
England.

[4] Dannenberg, R., W. Birmingham, B. Pardo, N. Hu,
C. Meek, and G. Tzanetakis, A Comparative
Evaluation of Search Techniques for Query-by-
Humming Using the MUSART Testbed. Journal of
the American Society for Information Science and
Technology, 2007: p. in press.

[5] Hewlett, W.B. and E. Selfridge-Field, eds. Melodic
Similarity: Concepts, Procedures, and
Applications. Computing in Musicology. Vol. 11.
1998, MIT Press: Cambridge, MA.

[6] Hu, N., R. Dannenberg, and A. Lewis. A
Probabilistic Model of Melodic Similarity. in
International Computer Music Conference
(ICMC). 2002. Goteborg, Sweden: The
International Computer Music Association.

Proceedings of the SMC 2010 - 7th Sound and Music Computing Conference, 21-24 July 2010, Barcelona - Spain

[7] McNab, R.J., L.A. Smith, D. Bainbridge, and I.H.
Witten, The New Zealand Digital Library MELody
inDEX. D-Lib Magazine, 1997. May Issue.

[8] Uitdenbogerd, A. and J. Zobel. Melodic Matching
Techniques for Large Music Databases. in Seventh
ACM International Conference on Multimedia.
1999. Orlando, FL.

[9] Kornstadt, A., Themefinder: A Web-based
Melodic Search Tool, in Melodic Similarity
Concepts, Procedures, and Applications,, W.
Hewlett and E. Selfridge-Field, Editors. 1998, MIT
Press: Cambridge, MA.

[10] Gillet, O. and G. Richard, Drum Loops Retrieval
from Spoken Queries. Journal of Intelligent
Information Systems, 2005. 24(2-3): p. 159-177.

[11] Salamon, J. and M. Rohrmeier, A Quantitative
Evaluation of a Two Stage Retrieval Approach for
a Melodic Query by Example System, Proceedings
of the 10th International Society of Music
Information Retrieval Conference (ISMIR 2009),
Kobe, Japan, 26-30 October 2009,

[12] Meek, C. and W. Birmingham, A Comprehensive
Trainable Error model for sung music queries.
Journal of Artificial Intelligence Research, 2004.
22: p. 57-91.

[13] Pauws, S. CubyHum: A Fully Operational Query
by Humming System. in ISMIR 2002. 2002. Paris,
France.

[14] Unal, E., S.S. Narayanan, H. Shih, E. Chew, and
C.J. Kuo. Creating Data Resources for Designing
User-centric Front-ends for Query by Humming
Systems. in Multimedia Information Retrieval.
2003.

[15] Shamma, D. and B. Pardo. Karaoke Callout: using
social and collaborative cell phone networking for
new entertainment modalities and data collection,
in Proceedings of ACM Multimedia Workshop on
Audio and Music Computing for Multimedia
(AMCMM 2006). 2006. Santa Barbara, CA, USA.

[16] von Ahn, L. and L. Dabbish. Labeling Images with
a Computer Game. in CHI 2004. 2004. Vienna,
Austria.

[17] Singh, P., The public acquisition of commonsense
knowledge, in Proceedings of AAAI Spring
Symposium on Acquiring (and Using) Linguistic
(and World) Knowledge for Information Access.
2002, Palo Alto, CA.

[18] Little, D., Raffensperger, D, and B. Pardo, A
Query by Humming System that Learns from
Experience, Proceedings of the 8th International
Conference on Music Information Retrieval, 2007
Vienna,Austria

[19] Wagner, R. and M. Fischer, The string-to-string
correction problem. Journal of the ACM, 1974.
21(1): p. 168-173.

[20] Chavez, E., G. Navarro, and J.L. Marroquin,
Searching in Metric Spaces. ACM Computing
Surveys, 2001. 33(3): p. 273-321.

[21] Skalak, M., J. Han, B. Pardo, Speeding Melody
Search with Vantage Point Trees, Proceedings of
the International Society of Music Information
Retrieval Conference(ISMIR 2008), Philadelphia,
PA, USA, September 14-18, 2008.

[22] Ferraro, P., P. Hanna, L. Imbert, T. Izard,
Accelerating Query-by-Humming on GPU,
Proceedings of the International Society for Music
Information Retrieval, 2009.

