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Abstract—Urban noise sensing in deeply embedded devices
at the edge of the Internet of Things (IoT) is challenging not
only because of the lack of sufficiently labeled training data but
also because device resources are quite limited. Look, Listen,
and Learn (L3), a recently proposed state-of-the-art transfer
learning technique, mitigates the first challenge by training self-
supervised deep audio embeddings through binary Audio-Visual
Correspondence (AVC), and the resulting embeddings can be
used to train a variety of downstream audio classification tasks.
However, with close to 4.7 million parameters, the multi-layer
L3-Net CNN is still prohibitively expensive to be run on small
edge devices, such as “motes” that use a single microcontroller
and limited memory to achieve long-lived self-powered operation.

In this paper, we comprehensively explore the feasibility
of compressing the L3-Net for mote-scale inference. We use
pruning, ablation, and knowledge distillation techniques to show
that the originally proposed L3-Net architecture is substantially
overparameterized, not only for AVC but for the target task
of sound classification as evaluated on two popular downstream
datasets. Our findings demonstrate the value of fine-tuning and
knowledge distillation in regaining the performance lost through
aggressive compression strategies. Finally, we present EdgeL3,
the first L3-Net reference model compressed by 1-2 orders of
magnitude for real-time urban noise monitoring on resource-
constrained edge devices, that can fit in just 0.4 MB of memory
through half-precision floating point representation.

I. INTRODUCTION

Real-time monitoring and mitigation of noise complaints
in an urban setting such as New York City [1]–[3] is a
topical problem that impacts the physical health and emotional
well being of citizens. However, urban deployment of sensing
nodes that support city operations combat noise pollution
poses technical as well as managerial challenges that make the
solution quite hard to scale. System longevity in particular is
of paramount importance: the audio sensing nodes must last
for months, if not years, with minimal human intervention
and often in the absence of wall power. This means that
these devices are required to be significantly more resource
constrained than wearable-scale Systems on Chips (SoCs) or
similar low power variants, such as the Raspberry Pi Zero
[4], PocketBeagle [5], or Intel Edison [6]. Even smaller,
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so-called mote-scale, IoT platforms such as NXP’s Vybrid
VF6xx [7] or STM’s Cortex M7 [8] offer as low as 1-1.5
MB of on-chip RAM, which must then accommodate all
sensing, classification, networking and management modules.
The unfortunate consequence of this fact is that the inference
engine, usually a deep neural net, cannot be allocated say more
than 500 KB of run-time memory.

Noise complaint monitoring is well suited to machine
learning. An important requirement for on-device machine-
learned classification of noise complaints in the urban set-
ting is the generalizability to a variety of contexts, so as
to tolerate the dynamic and unforeseen nature of a new
deployment environment. This necessitates training the model
with a huge corpus of labeled sound data, which is generally
unavailable due to the lack of sufficiently labeled domain-
specific datasets and the challenges in manually annotating
audio sources [9], [10]. Recently, a new Convolutional Neural
Net (CNN) architecture called Look, Listen, and Learn (L3-
Net) [11] has been proposed to effectively train an audio
embedding by learning associations between audio snippets
and video frames (Audio-Visual Correspondence, henceforth
referred to as AVC), without the need for explicit labels.
As shown in [12], an embedding derived from the L3 audio
subnetwork can outperform other state-of-the-art approaches
such as SoundNet [13] or VGGish [14] networks on a variety
of downstream tasks with limited data, making it a suitable
model to be adopted for our problem. However, the proposed
embedding architecture has 4,688,066 parameters. Excluding
the downstream classifier, the embedding alone requires 18
MB in the single precision floating point (FP) format, and
therefore must be reliably compressed by at least 1-2 orders
of magnitude before it can be considered for a realistic edge
deployment.

Contributions of this paper. We present (to the best of
our knowledge) the first analysis of magnitude-based sparsi-
fication, width reduction as well as depth reduction on the
L3 audio embedding for severely resource-constrained edge
audio sensing applications. Our experimental evaluation of the
accuracy and degree of compression of the L3 audio model is
in terms of the AVC task as well as representative downstream
tasks that respectively use two open source public datasets



US8K [2] and ESC-50 [15]. The main contributions of this
work are as follows:
1) We find that the original L3 architecture is substantially

over-parameterized, since it is possible to achieve up to
95% compression with just 0.22% drop in AVC accuracy
and ~1.5% compromise in the downstream tasks.

2) We compare the effects of pruning, fine-tuning, and knowl-
edge distillation in AVC as well as downstream tasks. We
find that aggressive compression of the audio subnetwork
reduces the AVC and downstream accuracies as expected,
but surprisingly, post hoc fine-tuning can help regain the
lost performance almost entirely. Similarly, knowledge
distillation using the pruned model as a student shows
comparable improvements in performance.

3) Orthogonally, we report a series of ablation experiments
on the L3 audio subnetwork in the form of depth and
width reduction. On the former, we show the feasibility of
reducing 50% of the model size by extracting embeddings
out of the penultimate convolutional layer at runtime. On
the latter, which involves significant architectural changes
to the network and incurs significant degradation in down-
stream accuracies, we find that fine-tuning can recoup the
lost performance by as much as 106%.

As a concrete first step in optimizing the classifier resource
utilization on the aforementioned class of constrained edge
devices, we are able to successfully compress the L3 em-
bedding by 1-2 orders of magnitude and produce a 0.4 MB
model with half precision FP. We discuss the currently existing
implementation challenges of EdgeL3 and motivate future
work towards successful mote-scale realization that combines
sparsities with ablation. Finally, we note that we have open-
sourced all of our models and code1.

II. RELATED WORK

CNNs have been used in state-of-the-art models for a wide
range of visual and acoustic applications [15]–[19]. While the
accuracy of CNNs have been seen to improve with increased
width and depth, it is difficult to store and run large models in
edge sensing applications. For instance, we are not aware of
any significant CNN implemented for a single microcontroller
platform. Size compression of CNNs has been an area of
active study over in the past few years: methods such as
pruning [20]–[26], quantization [27]–[29], low-rank approx-
imation [30], [31], knowledge distillation [32]–[34], efficient
convolution techniques [35], [36], hash encoding [37], [38]
have been considered by many researchers. Our approach to
shrinking the audio model in L3 involves the use of pruning
with fine-tuning as well as knowledge distillation with a
pruned student model.

Early works on pruning such Optimal Brain Damage [39]
and Optimal Brain Surgeon [40] reduced the number of
connections using the local curvature (in terms of the Hessian)
of the loss function. Given the overhead of the Hessian compu-
tation, Han et al. [27] instead omit the low-weight connections

1https://github.com/ksangeeta2429/l3embedding/tree/dcompression

and are able to compress AlexNet by 9X and VGG-16 by
13X. Our work adopts this magnitude-based neuron pruning
method. Wen et al. [41] use Lasso regularization on different
structures such as filters, channels, filter shapes, and layer
depth to learn a compressed structure of deep CNNs. Li et al.
[21] prune channels with small incoming weights in trained
CNNs, and then fine-tune the network to regain accuracy
pruning whole filter/channels. One of our ablation studies uses
this approach. Our other studies include different levels of
sparsity, not unlike Mao et al. [42] who study different levels
in between fine-grained sparsity [43] and very coarse-grained
sparsity [21] and observe their impact on inference accuracy.

Knowledge distillation aims at training a smaller “student”
network with the knowledge extracted from a comparatively
larger “teacher” model. Knowledge itself is variously defined
in the literature, for instance, in terms of feature representation
[32], class distribution [33] or output distribution [34]. We use
knowledge distillation as a retraining strategy. Specifically, we
let the pruned model that approximates the function of the
original model serve as the student in knowledge distillation.

III. LOOK, LISTEN, AND LEARN (L3-NET)

Look, Listen, Learn (L3) is an approach to training audio
and visual embedding through self-supervised learning via
the AVC task. This auxiliary task aims to predict whether
a 1 s audio segment and a single video image frame come
from the same video and also overlap in time. While the
AVC task itself has limited application, it can be trained on
a large amount of unlabeled data, learning how to generate
powerful intermediate embedding representations that can then
subsequently be used as input features on a target task for
which limited data are available. When used to extract audio
embeddings, this is a form of transfer learning that researchers
have shown to be effective for machine listening tasks such as
audio classification [11].

The AVC correspondence model consists of audio and video
subnetworks whose outputs are subsequently input to a fusion
network which predicts a binary AVC output. The inputs to
the network are a single image video frame (RBG) resized to
224 × 224 pixels and 1 s of audio sampled at 48 kHz. Both
the audio and video subnetworks are simple convolutional
neural network architectures constructed of 4 convolutional
blocks each of which contains 2 layers of 3× 3 convolutional
filters, followed by a 2×2 max-pooling layer with stride of 2.
Each individual convolutional layer is also followed by batch
normalization [44] and rectified linear unit (ReLU) activations
[45]. Both subnetworks are max-pooled across spatial loca-
tions to produce 512 dimensional (512-D) feature vectors. In
the fusion network, the 512-D audio and visual feature vectors
are concatenated into a 1024-D vector and processed by a
128-unit dense layer with ReLU activations, followed by a
dense, 2-D output layer with softmax activations. See Fig. 1
for details.

The audio model spans 8 convolutional layers arranged in 4
sequential blocks, with 64, 128, 256 and 512 filters per layer in
block respectively as mentioned in Table I. While the original
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Fig. 1: The architecture for training the L3-Net embedding
models on audio-visual correspondence (AVC)

L3-Net transformed the time domain audio input using a linear-
frequency log-magnitude spectrogram (0.01 s windows with
50% overlap, 257 frequency bands), subsequent work by other
researchers [12] found that an L3 embedding trained with 256-
band Mel-frequency (quasi-logarithmic) spectrograms input
achieved higher performance on downstream environmental
sound classification tasks.

These researchers also found that training on a music-related
subset of AudioSet [13] videos rather than the Flickr dataset
[46] used in the original paper also resulted in improved
downstream performance on downstream environmental sound

TABLE I: Number of filters and trainable parameters per
convolution layer in the original L3-Net audio embedding
model

Layer Num. Params. Num. Filters
conv1 640 64
conv2 36,928 64
conv3 73,856 128
conv4 147,584 128
conv5 295,168 256
conv6 590,080 256
conv7 1,180,160 512
conv8 2,359,808 512
Total 4,684,224 1,920
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Fig. 2: Impact of pruning individual L3-Net audio convolution
layers on AVC accuracy (first layer not pruned beyond 60 %
because of it’s sensitivity)

classification tasks. In this work, we build upon these findings
and use both Mel-spectrograms as input and train on the
music-related subset of AudioSet videos.

L3 [11] as well as L3 More [12] maxpool the last con-
volutional layer of the audio subnetwork such that the audio
features obtained are 6144-D. We, on the other hand, use audio
features of 512-D.

IV. EXPERIMENTAL DESIGN

Typically, L3-Net is trained against the “upstream” AVC
task using the music subset of AudioSet [47]. The audio
subnetwork’s last convolution layer (conv8) is used to extract
an embedding for “downstream” tasks. For the downstream
classifier, we use a multi-layer perceptron (MLP) with two
fully-connected hidden layers of size 512 and 128 respectively,
followed by an output layer whose size correspond to the
number of classes in the dataset being evaluated. The MLP
is trained to predict the class of a 1 s audio clip 2.

We explore the following fine-grained and coarse-grained
pruning strategies:

(i) Pruning individual weights of the filters, resulting in
sparse models.

(ii) Dropping entire filters or entire layers, resulting in non-
sparse models but with reduced width and depth, respec-
tively.

A. Sparse Audio Model

As in [27] we prune potentially unimportant connections
by nulling the weights whose absolute magnitude is less than
a constant threshold, which is calculated from the desired
sparsity level for that layer.

To determine the sensitivity of each layer, we prune each
layer independently with a range of sparsity values and test
the resulting pruned network’s accuracy on the validation set
for the AVC problem. Notably, we find the first convolution
layer (conv1) to be particularly sensitive to pruning: a sparsity
value as low as 30% in conv1 alone leads to a 9.81% drop
in accuracy. Besides conv1, we also notice conv5 to be highly

2Implementation details of both tasks are in [12].



TABLE II: Decomposition plan for L3-Net audio subnetwork layerwise pruning: per-layer sparsities, overall decrease in model
parameters and the resulting model size. The first row corresponds to the original model with 18MB weights. The highlighted
row corresponds to the EdgeL3 audio model for reasons we discuss in the Results section

Sparsities in Audio Convolution Layers (%) Reduction in
Weights (%)

Memory
(MB)conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8

0 0 0 0 0 0 0 0 NA 18
0 30 40 50 30 50 50 60 53.49 8.317
0 40 50 60 40 60 60 70 63.48 6.530
0 40 50 60 40 70 70 80 72.29 4.955
0 60 60 70 50 70 70 80 73.55 4.730
0 70 70 75 60 80 80 85 80.87 3.421
0 80 80 85 40 85 85 95 87.08 2.310
30 85 85 90 60 90 90 95 90.51 1.697
0 85 85 85 75 95 98 98 95.45 0.814
0 93 94 96 97 95.97 98 97 97.00 0.536
0 95 96 97 97 98 98.65 98 98.00 0.357
0 94 96 99 99 99 99 99.2 99.00 0.179

sensitive to sparsity values more than 50%. The impact of
sparsity on each layer is seen in Fig. 2.

While pruning across multiple layers, we prune the less
sensitive layers more than the sensitive layers, i.e., conv1
and conv5. Taking into account the sensitivity of conv1, we
avoid sparsifying it in most other experiments. Table II shows
various sparsity combinations we considered. The audio model
with 95.45% reduction in weights with a memory footprint of
0.814MB corresponds to the new audio model for EdgeL3-
Net. We also experiment with extreme sparsity levels so as
to achieve >95% and higher reductions in model weights to
understand how loss in performance grows.

Moreover, to compensate for the loss in performance at high
reduction levels, we re-learn the audio model’s weights in
two ways, one by using fine-tuning and the other by using
knowledge distillation.

1) Fine-Tuning: We fine-tune the model by retraining the
L3-Net with the pruned audio model while freezing the video
model and enabling an early stopping of the training (with
patience level of 10, i.e., training stops when loss does not
improve for 10 epochs). The training converges in ~50 epochs

whereas the original model was trained up to 300 epochs [12].
2) Knowledge Distillation: To approximate the original

feature extractor for the L3-Net, we explore the teacher-student
paradigm with the pruned audio model as student as shown in
Fig. 3. We formulate the learning objective to minimize the
Mean Square Error (MSE) Loss.

B. Non-Sparse Audio Model

Reductions other model sparsification are useful, for in-
stance, because their efficient realization is not necessarily
dependent upon implementation assumptions, such as hard-
ware accelerators or software libraries which eschew wasteful
Multiply-Accumulate (MAC) operations in convolution. Here,
we specifically explore the dimensions of architectural reduc-
tions in width and depth.

1) Depth Reduction: Since we find conv8, also the audio
embedding layer, to be least sensitive to sparsity, we test audio
embeddings extracted out of earlier layers like conv7, conv6
and conv5.

2) Width Reduction: Hao Li et al [21] consider filters with
smaller kernel weights produce feature maps with weaker

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8
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Fig. 3: Knowledge Distillation setup with original L3 audio as teacher and pruned audio model as student for audio embedding
approximation. Blackened cells signify sparsities in filters. Forward propagation is marked with black arrows, while red arrows
indicate backpropagation in student
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Fig. 4: Improvement in L3-Net AVC through fine-tuning
(FT). The red dotted line corresponds to the baseline model
performance

activations as compared to the other filters in that layer.
Following a similar reasoning, we drop kernels whose absolute
weight sum is less than a threshold value.

C. Downstream Tasks

We choose urban sound and environmental sound clas-
sification as representative downstream tasks for our target
application. These are evaluated on the following two open
source datasets:

• UrbanSound8K (US8K) [2], which consists of 8732
audio clips of up to 4s with 10 sound categories. The
dataset contains 10 equally-sized cross-validation folds.
The baseline downstream classifier for US8K gives a
mean cross-validation accuracy of 75.91%.

• Environmental Sound Classification Dataset (ESC-50)
[48], which consists of 2000 5s audio clips with 50
environmental sound categories. The dataset contains 40
data points in each category and comes separated into
5 equally-sized cross-validation folds. The downstream
classifier for ESC-50 has a mean cross-validation accu-
racy of 73.65%.

V. RESULTS

A. Pruning Results

Fig. 4 shows the degradation pattern in L3-Net AVC accu-
racies with progressively higher sparsifications as per Table II.
It also shows how much of the lost performance is regained
respectively with the fine tuning and knowledge distillation
based variants. Surprisingly, we find that with regard to AVC,
it is possible to compress L3 by up to 87% essentially for
free; in fact, doing so with the help of fine tuning reduces
overfitting and actually increases AVC validation accuracy by
0.9-1.7%. Pruning by itself is somewhat less effective, and the
untuned AVC validation accuracy drops sharply beyond a 70%
compression. The AVC quality degrades with compressions
of an order of magnitude or higher, but as mentioned before
fine-tuning helps recover it significantly, so that even at 95%
we are only about 0.22% short of the original AVC accuracy.
Similar benefits are observed in the downstream classification
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Fig. 5: Improvements in L3-Net pruned audio transfer learning
on downstream tasks through fine-tuning (FT) and knowledge
distillation (KD). Note that CV accuracy is the mean over the
folds. The red dotted line corresponds to the baseline model
performance

tasks (Fig. 5). With the aid of fine-tuned embeddings, there
is only a 2% (1.4%) accuracy loss on US8K (ESC-50), when
the model is compressed by 95%.

In accordance with the observations in Fig. 2, compensating
for the AVC performance loss becomes difficult when the
first layer conv1 is pruned. This is exemplified through the
(deliberate) 30% sparsification of conv1 on row 8 of Table
II: we get as high as ∼4.5% reduction in accuracy with 90%
pruning post fine-tuning, whereas the 95% pruned model with
conv1 intact only shows a 0.2% drop. However, this is not
reflected in the downstream tasks where we find both the
above models to perform nearly the same. This, and other
observations in the 90-99% range, leads us to postulate that the
relationship between the quality of AVC and that of the learned
embedding is significantly weakened as the compression ratio
increases beyond an order of magnitude.

Figure 5 shows that knowledge distillation (KD) is also
competitive on the downstream tasks as well, given our
MSE loss teacher-student formulation explained in Section IV.
While we explored KD purely from a feasibility standpoint in
this paper, these initial results are motivating enough for us to
pursue this direction as future work, since it opens up a vast
space of small, non-sparse student models that can be trained



TABLE III: Downstream accuracy of L3-Net depth reduction experiments (fine-tuning does not apply here)

Reduction In Num. Filters in Audio Convolution Layers Reduction
in Weights (%)

Accuracy (%)
conv

1
conv

2
conv

3
conv

4
conv

5
conv

6
conv

7
conv

8 US8K ESC-50

Original 64 64 128 128 256 256 512 512 NA 75.91 73.65

Depth
64 64 128 128 256 256 512 50.42 74.38 74
64 64 128 128 256 256 72.34 71.74 68.7
64 64 128 128 256 86.66 68.77 66.6

TABLE IV: AVC and downstream accuracy of L3-Net width reduction experiments, before and after fine-tuning

Reduction
In

Num. Filters in Audio Convolution Layers Reduction
in Weights

(%)

Acc. Before FT (%) Acc. With FT (%)
conv

1
conv

2
conv

3
conv

4
conv

5
conv

6
conv

7
conv

8 AVC US8K ESC-50 AVC US8K ESC-50

Original 64 64 128 128 256 256 512 512 NA 77.81 75.91 73.65 NA NA NA

Width
64 48 64 64 128 128 256 256 43.14 NA 51.39 34 77.51 74 71.25
64 48 64 64 128 128 128 128 64.54 NA 52.16 33.3 75.4 71.45 64.7
64 48 64 64 64 64 128 128 69.89 NA 48.87 32.6 76.40 72.46 67.2

to mimic L3-Net with even greater compressions than what
was achieved here.

To summarize, the key observation we make through our
pruning experiments is that the originally proposed L3-Net
embedding is highly over-parameterized for AVC as well as
transfer learning tasks. Even though this is established with
downstream datasets closest to our application, we believe our
findings hold true for other context as well.

B. Ablation Results

The ablation experiments are designed to evaluate non-
sparse reductions of audio models. As mentioned above, our
approach is two-fold: in one, we derive the embedding out
of a layer earlier than conv8 in the sequence, and in the
other, we reduce the number of filters in each layer. We
considered fine-tuning for the latter approach alone and not for
the former; fine-tuning is not expected to be meaningful for
depth reduction since we remove entire layers including conv8,
which was originally intended to be the audio embedding layer.
Similarly, AVC testing without fine-tuning is not applicable for
the latter case because, due to change in the output shape of
audio model, the fusion layers of L3 as shown in Fig. 1 need
to be redesigned and retrained from scratch. This corresponds
to the NA values in Table III.

1) Depth Reduction: The results of the first approach are
summarized in Table III. Taking the embedding out of the
penultimate layer (conv7) of a trained L3 audio model works
reasonably well, the compression achieved is 50% as the last
layer alone contributes over half of the trainable parameters.
This has the surprising implication that the entire conv8 can
be removed safely post-training. The network does start to
underperform as depth is reduced further, and downstream ac-
curacies go down by 9.5% when the embedding is taken out of
conv5 producing 86.6% reduction in model size. This indicates
that depth is relatively important in preserving the quality of
the audio model with the current L3-Net architecture.

2) Width Reduction: For the second approach, we find that
un-tuned filter dropping shows a huge performance loss on
both the downstream tasks (Table IV): for a mere 69.9%

compression, the US8K (ESC-50) dataset incurs an accuracy
drop of 35.63% (55.74%). However, the power of fine-tuning
becomes quite apparent in width reduction experiments as
we get the biggest improvements in the entire study (48.3%
and 106.13% for US8K and ESC-50 respectively, for the
aforementioned datapoint).

In this work, the ablation experiments have been presented
as an orthogonal direction to sparsification. While the results
currently underperform the sparsified models, cf. Fig. 5, the
prospects of being able to remove 50% of the model parame-
ters through depth reduction, as well as recovering almost the
entire performance loss in filter dropping through fine-tuning
are quite attractive. As future work we are motivated to explore
this avenue much more comprehensively in conjunction with
fine-tuning and knowledge distillation, specifically due to the
advantages of small, non-sparse models from an implementa-
tion standpoint (Section VI).

VI. EDGEL3 MOTE-SCALE IMPLEMENTATION AND
CHALLENGES

EdgeL3 is provides a useful reference model for approximat-
ing L3 audio for transfer learning. In this section we explore
its utility for implementation on mote-scale devices.

In terms of model storage, the L3 audio subnetwork re-
quires ~18 MB for its 4,688,066 parameters, whereas EdgeL3

requires only 0.814 MB for its 213,491 parameters. This
compressed model result in a negligible loss of 0.22% in AVC
performance and 1.4% (1.9%) drop in the ESC-50 (US8K)
downstream classification tasks. Quantization techniques are
orthogonal to network pruning techniques and can therefore
be complementary. Changing single-precision to half-precision
FP representation alone can reduce the EdgeL3 model size
to 0.407 MB. [27] [49] use fixed-point quantization at no
cost in accuracy. Absence of floating-point not only means a
smaller model but also produces more energy efficient EdgeL3.
However, further experiments are needed to evaluate the effect
of quantization on downstream tasks.

Consideration of dynamic memory resources is also war-
ranted for the edge sensing context. Although the EdgeL3



audio model has a sufficiently small static memory footprint,
the memory required for the activations is substantial at run
time, with conv1 and conv2 having the highest activation
memory, of ~12 MB. Recall the sensitivity of conv1, as is seen
in Fig. 4, which significantly reduces its sparsifying potential
and thereby impacts the sparsity of its output activation state,
making it the main bottleneck to address. Fortunately, as is
illustrated by the case of 90.51% reduction, the accuracy of
downstream tasks is not affected when sparsifying conv1 by
30%, as is seen in Fig. 5. This, along with the sparse repre-
sentation techniques, provides a path for managing dynamic
memory consumption by activation.

From a compute perspective, considering the dominance of
zero weights and activations in all of our methods, approaches
that eschew multiplications and additions with zero inputs ma-
terially improve performance and energy efficiency of CNNs.
Several hardware accelerators and software techniques [50]–
[53] have been proposed to handle sparse convolutions.

VII. CONCLUSION

We introduce EdgeL3, a 95% sparsified version of L3-Net,
as the first reference model for bringing state-of-the-art robust
machine listening to the edge. We establish the value of using
structured sparsity to compress the original model, which is
redundant in the number of parameters as well as the number
of layers. We show the benefits of fine-tuning and knowledge
distillation in recovering the lost performance of compressed
models.

However, more work needs to be done for a realistic mote
scale realization of EdgeL3. As explained in Section VI,
reducing the dynamic memory used by model activations at
runtime is of particular importance. Based on the individual
merits of sparsification as well as width or depth reduction
we have explored in this paper, an intelligent combination of
these techniques could be an interesting future direction in this
regard. We wish to investigate the effectiveness of fine-tuning
and knowledge distillation in bridging the performance gap of
these small but powerful approximations of L3-Net designed
for edge machine listening.
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