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ABSTRACT

Sound event detection (SED) in environmental recordings is a key
topic of research in machine listening, with applications in noise
monitoring for smart cities, self-driving cars, surveillance, bioa-
coustic monitoring, and indexing of large multimedia collections.
Developing new solutions for SED often relies on the availability of
strongly labeled audio recordings, where the annotation includes the
onset, offset and source of every event. Generating such precise an-
notations manually is very time consuming, and as a result existing
datasets for SED with strong labels are scarce and limited in size.
To address this issue, we present Scaper, an open-source library for
soundscape synthesis and augmentation. Given a collection of iso-
lated sound events, Scaper acts as a high-level sequencer that can
generate multiple soundscapes from a single, probabilistically de-
fined, “specification”. To increase the variability of the output, Sca-
per supports the application of audio transformations such as pitch
shifting and time stretching individually to every event. To illustrate
the potential of the library, we generate a dataset of 10,000 sound-
scapes and use it to compare the performance of two state-of-the-art
algorithms, including a breakdown by soundscape characteristics.
We also describe how Scaper was used to generate audio stimuli for
an audio labeling crowdsourcing experiment, and conclude with a
discussion of Scaper’s limitations and potential applications.

Index Terms— Soundscape, synthesis, sound event detection.

1. INTRODUCTION

Sound event detection (SED) is the task of automatically identifying
the source and location in time of different sounds as they occur in
a continuous audio stream. The task has received growing interest
from the research community over the last few years, with appli-
cations in noise monitoring for smart cities [1], bioacoustic species
and migration monitoring [2], self-driving cars [3], surveillance [4]
and large-scale multimedia indexing [5]. Training supervised algo-
rithms to perform this task requires large, annotated datasets. The
required precision of the annotations depends on the model: while
there has been some recent work on training models from weakly
labeled data (i.e. annotations that specify the presence/absence of
a source in an audio recording without specifying its temporal lo-
cation) [6], the majority of models proposed to date for SED re-
quire strongly labeled data, i.e. annotations that specify not only
the source but also the onset and offset of every sound event. Even
models that can be trained on weakly labeled data require strongly
labeled data for evaluating their performance at finer temporal res-
olutions.

∗This work was partially supported by NSF awards 1544753 and
1633259, and a Google Faculty Award.

Generating such annotations is a laborious and time-consuming
task, and consequently manually annotated datasets for SED with
strong labels are very limited in size (e.g. the TUT Sound Events
2016 development set is 78 minutes long). For model training, one
solution is data augmentation, i.e. the transformation/manipulation
of existing training data in order to generate new labeled samples
[7, 8, 9]. For SED, since the training data is comprised of sound-
scapes that contain multiple sound events, augmentations applied to
the soundscape as a whole can certainly be helpful, but are limited
in that the characteristics of the soundscape such as event timing,
degree of event overlap, and signal-to-noise ratio (SNR) will remain
unchanged even after transformation. For evaluation, a limitation of
datasets based on real recordings is that it is not possible to control
for different acoustic characteristics, which could be helpful in pro-
viding insight into the differences between different SED models.

To address these limitations, we present Scaper1, an open-
source Python library for soundscape synthesis and augmentation.
Given a soundbank (collection) of isolated sound events, Scaper
acts as a high-level, probabilistically controlled, audio sequencer
that can generate new soundscapes or add sound events to exist-
ing ones while controlling characteristics such as the number and
types of events, their timing, duration and SNR with respect to a
“background” track. While there is a large body of research on
problems related to soundscape synthesis such as binaural or spatial
scene synthesis [10], acoustic event synthesis [11] and texture syn-
thesis [12], such systems are typically not designed with the goal of
training/evaluating machine (and human) SED performance. This
means they are not necessarily designed to reproduce the types of
acoustic scenes such models are likely to be evaluated on, they do
not generate annotations that match the synthesized audio, and of-
ten they are not designed for batch processing and integration with
machine learning pipelines. To the best of our knowledge, the only
system designed specifically with SED in mind was the one pro-
posed by Lafay et al. [13]. Scaper varies from this system in sev-
eral ways: most importantly, while the aforementioned system only
provides high-level controls for generating soundscapes based on
fixed distributions, Scaper uses the concept of an “event specifica-
tion” coupled with multiple distributions to provide a flexible level
of control ranging from a high-level probabilistic soundscape def-
inition down to specifying every detail of every sound event. Fur-
thermore, Scaper supports applying audio transformations such as
pitch shifting and time stretching individually to each sound event,
significantly increasing the possible range and variability of the gen-
erated soundscapes. The library generates annotations in JAMS for-
mat [14] which stores Scaper-related metadata, facilitating a com-
plete reconstruction of the soundscape from its JAMS annotation as
well as supporting manipulation of the JAMS annotation to generate

1https://github.com/justinsalamon/scaper
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Figure 1: Block diagram of the Scaper synthesis pipeline.

variants of existing soundscapes. Finally, Scaper is implemented in
Python, which means it does not require any proprietary software
(such as, e.g., Matlab) and is easy to integrate with popular ma-
chine (and deep) learning Python libraries such as scikit-learn [15],
TensorFlow [16] and Keras [17], as well as popular audio analysis
Python libraries such as Essentia [18] and Librosa [19].

In the next section we provide an overview of Scaper, including
design choices and functionality. Next, we demonstrate the utility
of the library through a series of experiments: first, we use Scaper
to generate a large dataset of urban soundscapes and evaluate state-
of-the-art SED algorithms, including a breakdown by soundscape
characteristics. Next, we describe how Scaper was used to gener-
ate audio stimuli for a crowdsourcing experiment on the accuracy
of human sound event annotations as a function of sound visual-
ization and soundscape characteristics. The paper concludes with a
discussion of limitations and suggestions for new use cases.

2. SCAPER

SED is based on the notion that sounds in a soundscape can be
broadly grouped into two categories: foreground sound events
which are salient and recognizable, and background sounds, often
regarded as a single holistic sound which is more distant, ambigu-
ous, and texture-like [20, 21, 22]. Scaper was designed with the
same paradigm in mind: a soundscape is generated as the summa-
tion of foreground events and a background recording. It is up to
the user to curate a soundbank (collection) of their choice and or-
ganize the sounds into foreground and background folders, with a
sub-folder for each sound class (label). As such, Scaper is content-
agnostic and can be readily applied to a variety of audio domains
including urban and rural soundscapes, bioacoustic recordings, in-
door environments (e.g. smart homes) and surveillance recordings.
A block diagram of Scaper’s synthesis pipeline is given in Figure 1.

A key building block of Scaper is the event specification. An
event specification stores all properties of a sound event that Sca-
per can control, namely: the event label (class), source file (i.e. the
specific sound clip to be used), the event duration, the source time
(i.e. when the event starts in the source clip), the event time (when
the event should start in the generated soundscape), the SNR with
respect to the background recording, the event role (foreground or
background), pitch shift (in semitones, does not affect duration)
and time stretch (as a factor of the event duration, does not af-
fect pitch). Thus, a soundscape is defined by a set of event spec-
ifications, which are grouped into a foreground specification (for
all foreground events) and a background specification. To define
a soundscape, the user specifies a desired soundscape duration, a
reference loudness level for the background, and then adds event
specifications. For every property in an event specification the user
provides a distribution tuple, which defines a distribution to sample

the property value from. The distributions currently supported in-
clude const (specifying a constant value), choose (randomly select-
ing from a discrete list of values), uniform, normal and truncnormal
(sampling from a continuous distribution), and additional distribu-
tions can be easily added. As such, the user has control over how
detailed the specification is: from precisely defining every property
of every event using constants to a high-level probabilistic specifica-
tion that only specifies a distribution to sample from for every event
property. Given the foreground and background specifications, the
user can generate infinitely many soundscape instantiations2.

An instantiated specification (i.e. with concrete values that have
been sampled for all properties) is then used as a recipe for generat-
ing the soundscape audio, where all audio processing is performed
using pysox [23]. One aspect of the generation that requires spe-
cial care is the handling of SNR values. In particular, simple peak
normalization does not guarantee that two sounds normalized to the
same level will be perceived as equally loud. To circumvent this,
Scaper uses Loudness Units relative to Full Scale (LUFS) [24], a
standard measure of perceived loudness used in radio, television
and Internet broadcasting. Thus, if an event is specified to have an
SNR of 6, it means it will be 6 LUFS above the background level.
Finally, Scaper saves the soundscape annotation in two formats: the
first is a simple space-separated text file with three columns for the
onset, offset and label of every sound event. This format is useful
for quickly inspecting the events in a soundscape and can be directly
loaded into software such as Audacity to view the labels along with
the audio file. The second format is JAMS [14], originally designed
as a structured format for music annotations, which supports stor-
ing unlimited, structured, file metadata. Scaper exploits this to store
both the probabilistic and instantiated specifications of every sound
event. This means that (assuming one has access to the original
soundbank) Scaper can fully reconstruct the audio of a soundscape
from its JAMS annotation. Scaper is open-source (see footnote 1)
and we encourage contributions from the community to improve the
library and implement new features.

3. THE URBAN-SED DATASET

To illustrate the utility of Scaper, we used it to generate a large
dataset of 10,000 ten-second soundscapes for training and evaluat-
ing SED algorithms. We used the clips from the UrbanSound8K
dataset [25], approximately 1000 per each of ten urban sound
sources (each clip contains one of the ten sources), as the sound-
bank. UrbanSound8K is pre-sorted into 10 stratified folds, and so
we use folds 1–6 for generating 6000 training soundscapes, 7–8
for generating 2000 validation soundscapes and 9–10 for generat-
ing 2000 test soundscapes. Soundscapes were generated using the
following protocol: first, we add a background sound normalized
to -50 LUFS. We use the same background audio file for all sound-
scapes, a 10 second clip of Brownian noise, which resembles the
typical “hum” often heard in urban environments. By using a purely
synthesized background we are guaranteed that it does not contain
any spurious sound events that would not be included in the anno-
tation. Next, we choose how many events to include from a discrete
uniform distribution between 1–9. Every event is added with the
same high-level specification: the label is chosen randomly from all
10 available sound classes, and the source file is chosen randomly
from all clips matching the selected label. The source time is al-
ways 0, to ensure we do not miss the onset of an event. The start

2For an example see: https://git.io/v9GGn
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time of the event in the generated soundscape is sampled from one
of three distributions: uniform between 0–10, unimodal (normal
with mean 5 and standard deviation of 2) and bimodal (two normals
with means of 3 and 7 and a standard deviation of 2). By using these
distributions for the event start times we obtain a variety of sound-
scapes, some in which the events are spread out and others in which
they tend to be more clustered in time, consequently leading to a
greater degree of overlap, henceforth referred to as polyphony. We
define the maximum polyphony of a soundscape to be the greatest
sound event polyphony observed at any point in time in the sound-
scape. The maximum polyphony is automatically computed by Sca-
per during generation and stored in the JAMS annotation. This will
allow us to easily evaluate model performance as a function of max-
imum polyphony. Duration is chosen from a uniform distribution
between 0.5–4 seconds (all clips in UrbanSound8K are at most 4
seconds), unless the source clip is shorter in which case the dura-
tion of the source clip is used. The SNR is sampled uniformly be-
tween 6–30 dB. Finally, every event is pitch shifted by a semitone
amount sampled from a (continuous) uniform distribution between
-3 and 3, and time stretched by a factor sampled from a uniform
distribution between 0.8 and 1.2. For an example of implementing
this procedure using Scaper see footnote 2. The resulting dataset,
URBAN-SED, consists of 10,000 soundscapes totaling almost 30
hours with close to 50,000 annotated sound events with maximum
polyphonies between one and seven. This makes it the largest
strongly labeled dataset available for SED, though we could of
course make it arbitrarily larger or smaller. The second largest,
TUT-SED synthetic 2016 (also synthesized) [26], is roughly 9.5
hours long and to the best of our knowledge was generated us-
ing ad-hoc scripts which are not publicly available. URBAN-SED
is made freely available online3, and for reproducibility all scripts
used to generate it, as well as run the machine learning experiments
reported in the following section, are also made available online4.

4. SCAPER FOR MACHINE LEARNING

For the machine learning experiments we evaluated two state-of-
the-art models: the first is the Convolutional Recurrent Neural Net-
work (CRNN) proposed by Cakir et al. [26]. We use the architecture
identified by the authors to perform best on the TUT-SED-2016 de-
velopment dataset [26], with 743k parameters (see [26] for details),
and ensured our implementation was correct by training/testing it on
that dataset, for which we obtained near-identical results to those
reported in the paper. The second model is an adaptation of the
Convolutional Neural Network (CNN) proposed by Salamon and
Bello [27]. The original model was proposed for multi-class classi-
fication, and so to adapt it for multi-label classification we replace
the final softmax activation with sigmoid activations. The original
model had 241k parameters, and so to match the capacity of the
CRNN we increase the number of convolutional filters to 64 in each
layer. We also add batch normalization [28] to the output of the
convolutional layers. Since we want to use the model for SED, we
reduce the duration of the input representation to 1 s, and reduce
the max pooling after the convolutional layers to (2,2). The result-
ing model has 720k parameters. An important difference between
the models is that the CRNN outputs predictions at the frame level
(e.g. 20 ms resolution) whereas the CNN outputs predictions at a
1 s temporal resolution. This is motivated by the fact that a 1 s

3http://urbansed.weebly.com/
4https://git.io/v9GEM
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Figure 2: Performance (1 s segment-based F-measure) for the com-
pared models (CRNN and CNN), by sound event class and overall.

temporal resolution would be sufficient for urban sound monitoring
applications, has been used in recent work with promising results
[5], and results in a model that is significantly faster to train. Both
models are implemented in Keras [17] and trained using the Adam
optimizer [29] with binary cross-entropy loss over 300 epochs with
an early-stopping criterion of 100 epochs with no improvement to
the segment-based F-measure [30], computed at a 1 s temporal res-
olution5 using sed eval [30] where an epoch represents one full pass
over the training set. The training set contains 6000 soundscapes,
and the validation and test sets contain 2000 soundscapes each.

The results are presented in Figure 2, in which we also include
a breakdown of the performance by sound class. We note that over-
all the two models perform comparably, with the CRNN perform-
ing notably better on air conditioner and gunshot events while the
CNN performs better on car horns and jackhammers. By design,
we generated URBAN-SED to contain soundscapes with a range of
characteristics, and in particular different polyphonies, allowing us
to easily break down model performance by maximum polyphony.
Since the models perform comparably, for the breakdown we focus
on the CNN model. In Figure 3 (top) we present the F-measure, Pre-
cision and Recall (1 s segment-based) yielded by the CNN model on
the test set, grouped by the maximum polyphony which ranges from
one to seven. As one might expect, we note that the F-measure grad-
ually declines as the maximum polyphony increases, but more inter-
esting still, we see that it is because the recall declines, whereas the
precision remains stable (and even goes up). This suggests that as
more sound events overlap the model is increasingly likely to only
detect a subset of the events, however it remains equally precise.
We shall revisit this result in the following section when we con-
sider human annotation performance. Finally, Scaper also allows
us to easily assess model performance as a function of sound event
SNR. A priori this seems complicated since every soundscape con-
tains multiple events with heterogeneous SNR values. Scaper offers
an easy solution: we took the 2000 JAMS annotations of the test set,
edited them such that all events in a soundscape have the same SNR,
and then re-generated the soundscape audio files from the modified
JAMS annotations. We repeated this process eight times, setting the
event SNR to be in the range 6–9, 9–12, 12–15, 15–18, 18–24, 24–
27 and 27–30. This results in eight versions of the test set which
have identical characteristics with the exception of the SNR, allow-
ing for a highly controlled experiment that would not be possible
otherwise. The performance of the CNN as a function of SNR is
presented in Figure 3 (bottom). We see an interesting effect: as
the SNR increases, the model’s precision and recall display oppo-

5Evaluating the CRNN at finer temporal resolutions (100 ms and 20 ms)
did not result in higher overall or class-wise F-measures compared to 1 s.
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Figure 3: CNN score vs. max polyphony (top) and SNR (bottom).

site behaviors: recall goes up, meaning the model correctly detects
more of the events, but this leads to an increased number of false
positives, bringing down precision. The net effect is a relatively sta-
ble F-measure, but through this experiment we now know that this
stability hides quite different model behavior as the SNR changes.

5. SCAPER FOR CROWDSOURCING EXPERIMENTS

As a second use case for Scaper, we briefly present a subset of the
results from a recent study on crowdsourcing human annotations
of sound events in soundscapes [31]. Crowdsourcing annotations
can be seen as a complementary solution to synthesis: on the one
hand it does not allow for the same level of control over the au-
dio material, but on the other hand it supports the large-scale an-
notation of real audio recordings, which are necessary for obtain-
ing a reliable estimate of how well a model will generalize once
deployed in a real environment. Since the goal of the experiment
was to assess the quality of human labels, it is not possible to use
human labeled soundscapes as stimuli for the experiments. By us-
ing Scaper, we were able to generate audio stimuli with perfect an-
notations (a soundbank of 90 carefully curated sound events was
used to generate 3000 soundscapes from which 60 were selected
to cover a range of soundscape complexities and used as stimuli),
thus ensuring that any effect observed in the experiment is due to
the subjects’ annotation abilities and the experimental interventions,
and not due to a subjective discrepancy between the subjects and
a “reference annotator”. In Figure 4 we present the subjects’ an-
notation performance in terms of segment-based precision, recall
and F-measure computed at a 100 ms resolution as a function of
maximum polyphony. In this experiment maximum polyphony was
grouped into three levels, level 0 (maximum polyphony of 1), level
1 (maximum polyphony of 2) and level 2 (maximum polyphony
of 3 or 4). Interestingly, we see that the human annotators exhibit
similar behavior to the machine learning models: as the polyphony
level increases the F-measure decreases, primarily due to a drop in
recall, while the precision remains high. The human subjects, like
the machine it seems, miss more events as the degree of overlap in-
creases, but annotate the events that they do recognize accurately.
This is a very promising result, suggesting that human labels for

0 1 2
Polyphony Level

0.6

0.8

1.0
F-score

0 1 2
Polyphony Level

0.6

0.8

1.0
Precision

0 1 2
Polyphony Level

0.6

0.8

1.0
Recall

Figure 4: Human annotation performance vs. max polyphony: level
0 (max polyphony of 1), level 1 (2) and level 2 (3 or 4).

dense soundscapes can be considered reliable, albeit incomplete.
Another goal of the experiment was to assess whether the way in
which the audio was visualized in a web-based annotation interface
had any influence on the quality of the annotations, where we com-
pared three different visualizations: a waveform, a spectrogram,
and no visualization at all. By comparing the distribution of hu-
man annotated event onsets and offsets to the Scaper annotations,
we were able to show that a spectrogram visualization resulted in a
statistically significant improvement in the temporal accuracy of the
human annotations. For further details and results from the crowd-
sourcing experiments the reader is referred to [31].

6. DISCUSSION

In addition to the use cases presented above, Scaper could be used
for soundscape augmentation, for example by adding sound events
to an existing dataset, allowing the expansion of the set of classes
a model is trained to recognize without requiring an entirely new
dataset. Given a dataset for SED, one could also carve out all sound
events that do not overlap with others, and use them as a soundbank
to generate completely new soundscapes as a form of data augmen-
tation for training a model. Even though the source material is not
new, by applying audio transformations and generating previously
unseen polyphonies the augmented data could potentially improve
the generalizability of the model – this remains to be shown. Fi-
nally, it is important to note the limitations of our solution. First
and foremost, the generated soundscapes, even if they sound quite
realistic in some cases, cannot encompass the richness and com-
plexity of real soundscapes. This means that while Scaper is useful
for generating datasets both for training models and for comparing
model performance as a function of controlled acoustic character-
istics, it cannot be used as a replacement for manually annotated
real-world recordings, if we wish to estimate how well a model will
perform in a real environment. Furthermore, since the specification
is fully up to the user, it is possible to generate soundscapes that are
not plausible, and so the soundscape parameters need to be chosen
conscientiously and as a function of the specific domain applica-
tion. Currently Scaper does not support explicitly controlling cer-
tain scene characteristics such as maximum (or average) polyphony,
and we plan to add this functionality in the future. Despite these
limitations, we believe Scaper is a highly valuable tool for data
generation, augmentation, and controlled evaluation, and we look
forward to the research community’s feedback and contributions.
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