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Abstract
Few-shot learning has shown promising results in sound event
detection where the model can learn to recognize novel classes
assuming a few labeled examples (typically five) are available
at inference time. Most research studies simulate this process
by sampling support examples randomly and uniformly from
all test data with the target class label. However, in many real-
world scenarios, users might not even have five examples at
hand or these examples may be from a limited context and not
representative, resulting in model performance lower than ex-
pected. In this work, we relax these assumptions, and to re-
cover model performance, we propose to use active learning
techniques to efficiently sample additional informative support
examples at inference time. We developed a novel dataset simu-
lating the long-term temporal characteristics of sound events in
real-world environmental soundscapes. Then we ran a series of
experiments with this dataset to explore the modeling and sam-
pling choices that arise when combining few-shot learning and
active learning, including different training schemes, sampling
strategies, models, and temporal windows in sampling.
Index Terms: sound event detection, few-shot learning, active
learning

1. Introduction
Few-shot learning [1–5] has recently been proposed for sound
event detection [6] and shown promising results, where a model
is trained to learn to recognize novel sound classes, unseen dur-
ing training, given only very few examples from each new class
at inference time. It has been applied to tasks in various audio
domains, including speech, music, and environmental sound,
tackling the labeled data scarcity issue by incorporating mini-
mal human input [7–13].

One of the main assumptions of few-shot learning is that
human users can provide a few examples (e.g. five) of the target
novel class, which we call the support set, at inference time. In
research studies, this process is typically simulated by sampling
the support set randomly and uniformly from all available test
data with the target class label. However, this assumption and
simulation might not reflect real-world sound event detection
scenarios. Often, obtaining a few representative audio exam-
ples is not as straightforward as one might expect. For example,
in the case of environmental sound monitoring, when a user en-
counters a new sound class that they want the model to learn
to recognize, they might not be able to obtain five examples
right away and/or the examples they can obtain may be from
a limited context and not representative. Similarly, in the case
of automatic drum transcription, obtaining five representative
examples may be difficult if the target drum class is sparse or
highly varying within the song. Therefore, model performance
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Figure 1: Simulated occurrence probabilities of a foreground
sound class in the SONYC-FSD-SED dataset.

in these real-world scenarios may be lower than the model per-
formance reported in research papers.

In this work, we show that while model performance drops
when we relax these assumptions to reflect real-world scenarios,
we can not only recover but supersede prior model performance
by combining few-shot learning with active learning, where the
model actively queries human users for labels of the most infor-
mative unlabeled data that improves model performance [14].
In prior work, active learning has been applied to various au-
dio classification tasks and shown to be effective in improving
training efficiency and reducing annotation effort [15–21]. By
introducing of active learning into few-shot learning, we aim to
efficiently build a better and more representative support set.

To understand how to effectively combine few-shot learn-
ing and active learning, we developed a novel dataset SONYC-
FSD-SED, which will be freely available online, and designed
a series of experiments using this dataset to explore the model-
ing and sampling choices that arise when combining these tech-
niques. We pursue this work in the context of environmental
sound monitoring. SONYC-FSD-SED simulates the long-term
temporal characteristics of sound events in a real-world envi-
ronmental sound monitoring system with ground-truth labels.
It reflects the seasonal periodic patterns of the occurrences and
co-occurrences of sound classes. In the experiments, we first ex-
plore different training schemes for the few-shot model. While
a standard few-shot model is typically trained and tested with a
fixed number of random support examples (i.e., fixed number of
shots), during the active sampling process, the number of sup-
port examples is constantly changing. We propose new training
schemes to better match the diversity and the varied number of
support examples during these inference time scenarios. Sec-
ond, we experiment with different few-shot models to see how
they interact with active learning and affect sampling. Lastly,
we study how different temporal windows in sampling affect
model performance and generalization, mimicking the scenario
where users only have access to data with limited variability
and diversity. While in this work we perform experiments in
the context of environmental sound monitoring, we expect our
experimental design and findings should be generally applica-
ble to sound event detection tasks in other audio domains such
as music and speech.



2. The SONYC-FSD-SED dataset
To study our research questions in a realistic setup, we create the
SONYC-FSD-SED dataset that simulates audio data in an envi-
ronmental sound monitoring system, where sound class occur-
rences and co-occurrences exhibit seasonal periodic patterns.
We use recordings collected from the Sound of New York City
(SONYC) acoustic sensor network [22] as backgrounds, and
single-labeled clips in the FSD50K dataset [23] as foreground
events. Instead of sampling foreground sound events uniformly,
we simulate the occurrence probability of each class at different
times in a year, creating more realistic temporal characteristics.

We first pick a sensor from the SONYC sensor network and
subsample from recordings it collected within a year (2017).
We categorize these ∼550k 10-second clips into 96 bins based
on timestamps, where each bin represents a unique combina-
tion of the month of a year, day of a week (weekday or week-
end), and time of a day (divided into four 6-hour blocks). Next,
we run a pre-trained urban sound event classifier [24] over all
recordings and filter out clips with active sound classes. We do
not filter out footstep and bird since they appear too frequently,
instead, we remove these two classes from the foreground sound
material. Then from each bin, we choose the clip with the low-
est sound pressure level, yielding 96 background clips.

For foreground sound events, we follow the same filtering
process as in [25] to get the subset of FSD50K with short single-
labeled clips.We remove the two classes that exist in our back-
grounds from the total 89 classes as mentioned earlier, and par-
tition the remaining classes into disjoint train, validation, and
test splits with a 43:14:30 ratio. For each class, we model its
occurrence probability within a year. We use von Mises prob-
ability density functions to simulate the probability distribution
over different weeks in a year and hours in a day considering
their cyclic characteristics: f(x|µ, κ) = eκcos(x−µ)/2πI0(κ),
where I0(κ) is the modified Bessel function of order 0, µ
and 1/κ are analogous to the mean and variance in the nor-
mal distribution. We randomly sample (µyear, µday) from
[−π, π] and (κyear, κday) from [0, 10]. We also randomly as-
sign pweekday ∈ [0, 1] , pweekend = 1 − pweekday to simulate
the probability distribution over different days in a week. Fi-
nally, we get the probability distribution over the entire year
with a 1-hour resolution as shown in Figure 1. At a given times-
tamp, we integrate fyear and fday over the 1-hour window and
multiply them together with pweekday or pweekend depends on
the day. To speed up the following sampling process, we scale
the final probability distribution using a temperature parameter
randomly sampled from [2, 3].

Lastly, we sample and mix the background and foreground
sound events into 10-sec soundscapes using Scaper [26]. At a
timestamp t in a year, we pick the corresponding background
clip, sample foreground classes based on the simulated p(t) per
class, and pick one clip per sampled class. Each sampled sound
event is randomly pitch-shifted within ±2 semitones and time-
stretched by a ratio in [0.8, 1.2], The clips are then randomly
placed in the background and mixed with an SNR randomly
sampled from [-5, 20] dB. We limit the number of classes in a
soundscape to be in [1, 5]. We take the 43 training classes as
foreground sound classes to build the training set, and run the
sampling and mixing process over a year multiple times to get
at least 20 soundscapes at each timestamp. For validation and
test sets, we change foreground sound classes accordingly and
make sure we get at least one soundscape at each timestamp.
The resulting dataset spans a simulated year and contains 335k
training, 69k validation, and 62k test 10-sec soundscapes.

3. Experimental design
3.1. Prototypical networks

We use prototypical networks [3] as the few-shot model in this
work. Prototypical networks have been found to perform well
on several few-shot audio-related tasks [8–11, 27]. They aim to
learn a discriminative feature space in which a prototype rep-
resentation can be computed for a novel class by averaging the
feature vectors of a few novel examples. Classification is then
performed for an embedded query point by simply finding the
nearest class prototype based on squared Euclidean distance.

We train a basic prototypical network using the SONYC-
FSD-SED training set via episodic training [3] with 10-way
5-shot classification tasks [10, 11]. In each training iteration,
a training episode is formed by randomly selecting 10 classes
from the training set. For each selected class, we sample 5
samples into the support set and another 16 samples for com-
puting the classification loss [5]. By training with a large col-
lection of episodes, the model learns class-agnostic ability to
learn from limited labeled data. We use the pre-trained CNN-
based OpenL3 audio subnetwork [28] (with fixed wights) with
an additional fully-connected layer as the backbone, which ex-
hibited better performance compared to training the original 4-
layer CNN from scratch in our preliminary experiments.

3.2. Exp. 1: Comparing sampling strategies at inference

With a trained prototypical network, we can detect a novel
sound event at test time by formulating it as a binary classifi-
cation problem, providing a few target examples to compute a
positive prototype, and model the negative prototype using ran-
dom examples from available data as proposed in the previous
work [10]. However, this assumes we have access to a few tar-
get examples, which might not be the case in many real-world
scenarios. In this work, we relax this assumption by starting
from just one random target example, mimicking the scenario
when a user first recognizes a new sound event of interest, and
100 random examples from the training set as initial negative
support examples. Then, the goal is to update the support set by
asking few more labels from the users in an efficient way. To do
so, we propose to incorporate active learning techniques, specif-
ically, the uncertainty-based sampling [14], where we use the
trained few-shot model to find the most uncertain example from
the entire test set and query for its label. We simulate the human
labeling process by directly using the ground-truth label of the
queried example. We run this sampling process 100 times. At
each iteration, we choose the example with the predicted proba-
bility closest to 0.5, add it to the support set to update the corre-
sponding prototype, and report the resulting model performance
on the test data. For comparison, we also run the same pipeline
but sample additional examples using random sampling. Note
that annotating 100 times would require much less human effort
than finding 100 positive examples.

3.3. Exp. 2: Comparing prototypical net. training schemes

The main motivation of the episodic training technique is to
match training and testing scenarios. It has been shown that
matching the number of shots n between training and testing a
few-shot model results in better performance [3, 10]. That is,
if we plan to test the model with 5 shots (5 examples per novel
class), it is ideal to train the model with 5-shot episodes. How-
ever, in our setup, at test time, we start with only one target
example (n = 1) and iteratively sample additional examples
with increasing n, which does not match our standard training



setup. Therefore, we propose two other training schemes that
further match training and testing scenarios.

First, instead of training with fixed 5-shot, we train with
random shots. In each training episode, we randomly choose n
from [1, 20] and build the support set accordingly. By doing so,
the model can learn to work with different numbers of support
examples as in different sampling stages at inference time. We
refer to this training scheme as random-shot training.

Next, we go a step further to match the entire active sam-
pling process. In each training episode, we start from n = 1
and select an additional 100 samples per class to form a pool
with 10 × 100 total samples. Then, we run 100 active sam-
pling iterations to sample the most uncertain examples from the
pool to update the support set. Here we measure uncertainty
using the best-vs-second-best strategy [29] designed for multi-
class setup, which considers the difference between the proba-
bility values of the top two predicted classes. We compute loss
and gradient at each sampling iteration and perform one back-
propagation at the end of iteration 100 based on the accumulated
gradient. We call this training scheme active-shot training.

3.4. Exp. 3: Comparing different sampling windows

Thus far our experiments have assumed having access to the en-
tire test set at inference time to sample addition support exam-
ples. However, we also want to explore scenarios where we only
have limited access to the data, for example when we do not
save all historical data collected by an acoustic sensor, and ob-
serve how this affects model performance and generalizability.
To do so, in this set of experiments, we generate an additional
2-years of test data following the same process in Section 2,
and consider the updated test set as data in the past year, cur-
rent year, and future year. For each test class, we find the peak
position of its simulated occurrence probability distribution in
the current year. Then, we define 5 temporal windows, 2-week,
1-month, 3-month, 6-month, and 1-year to sample additional
support examples. We start from a 2-week window centered
around the peak timestamp, and expand it on one side along
the direction to the past, simulating scenarios in which we have
varying access to the historical data. Note that the initial support
example is always sampled from the 2-week window. Finally,
we compute performance on the data a year before and after the
current peak timestamp, to see how the model generalizes to
data in the past (which we have varying access to) and future.

3.5. Exp. 4: Comparing few-shot to logistic regression

Recent works have shown that a simple logistic regression (LR)
model on top of a pre-trained embedding model outperforms
few-shot algorithms when n > 10 on audio classification task
[25]. In addition to the prototypical networks, we experiment
with this transfer learning approach to compare their behavior
with active sampling. We train the same backbone architecture
on the same training set via standard supervised learning. At
test time, for each novel class, we embed the support examples
via the trained embedding model and use them to directly train a
binary LR model. During active sampling, we add the sampled
examples to the support set to retrain the LR model.

4. Results
4.1. Training schemes and inference sampling strategies

We first compare prototypical networks with three different
training schemes: 5-shot, random-shot, and active-shot. At test
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Figure 2: Mean F-measure (left) and total positive examples
(right) at each sampling iteration for prototypical networks with
different training schemes and inference sampling strategies.

time, we run each model with two different sampling strategies:
random and active sampling, to sample additional examples to
update corresponding prototypes. Figure 2 shows how model
performance and sampling efficiency change with sampling it-
eration at inference time. We report the mean F-measure for
performance and mean total positives for sampling efficiency,
averaged over 30 test classes. We also show the model perfor-
mance when we have five random positives as assumed in the
typical few-shot setup as a baseline (red dotted line).

First, the right plot of Figure 2 shows that random sampling
only returns less than five positives after 100 iterations while
active sampling returns more positives at a faster rate. Mean-
while, the left plot of Figure 2 shows that for all three models,
using active sampling consistently achieves better performance
at all iterations. In addition, we see performance drops from
the baseline on models with random sampling, as a result of re-
laxing the standard few-shot assumption. With active sampling,
we are able to bring the performance towards the baseline and
even go beyond it with increasing sampling iterations. This in-
dicates that the uncertainty-based sampling strategy is effective
at sampling informative examples more efficiently and forming
representative prototypes for few-shot models.

Next, we compare model performance when fixing sam-
pling strategy to random sampling. We see that the random-shot
model performs significantly better than the 5-shot model, while
the active-shot model improves even further. This shows that in
the regime with very few positive examples, matching the setup
with varying numbers of shots at training time is critical for
model performance. And on top of that, training with more in-
formative support examples sampled with the uncertainty sam-
pling strategy results in an additional performance boost.

Lastly, we look at model performance with active sam-
pling. The random-shot model outperforms the 5-shot model
until around iteration 60 when more positive examples are la-
beled. Compared to the random-shot model, active-shot model
achieves slightly higher performance in the first 20 iterations
and falls behind afterward. Note that we consistently observe
this trade-off (including the preliminary experiments) between
performance in few-shot and mid-shot regimes. No one model
dominates both regimes and there is always a cross-point in per-
formance. As part of future work, we plan to investigate further
in the learned embedding space to understand this behavior.

Considering that performance in the few-shot regime is par-
ticularly important, since in real use cases, users might not want
to annotate up to 100 iterations, together with the longer train
time for the active-shot model, we fix the training scheme for
prototypical networks to random-shot in the rest of this work.
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Figure 3: Mean F-measure for prototypical networks and mean
total variance of positive examples sampled with different sam-
pling strategies.

4.2. Support set diversity

We have shown that it is more efficient to sample the support
set using active sampling. While active sampling gets more “in-
formative” samples according to the uncertainty heuristic, these
samples are not necessarily the most diverse, especially in early
iterations when starting with just one positive example. To bet-
ter understand the relationship between support set diversity and
model performance, we look at model performance with differ-
ent numbers of positive support examples sampled using both
random and active sampling, and we measure the diversity of
the sampled examples by their mean total variance.

The result in Figure 3 shows a strong correlation between
model performance and support examples diversity, implying
that few-shot models can benefit from a diverse support set.
Random sampling shows consistent example diversity across
different numbers of examples. Active sampling starts from
lower example diversity which then increases with the increas-
ing number of examples. This indicates that, as future work,
it is worth exploring other active learning sampling strategies
which explicitly take the example diversity into account to im-
prove the support set diversity and thus the following few-shot
model performance in the few-shot regime. Note that the result
in Figure 3 does not imply that we should favor random sam-
pling in the few-shot regime since these two sampling strategies
require different numbers of sampling iterations to get the same
number of positives. It takes a long time to get even just a few
positives using random sampling as shown in Figure 2.

4.3. Prototypical networks v.s. logistic regression

Next, we compare prototypical networks with the LR model.
The results in Figure 4 show that with random sampling,
prototypical networks consistently achieve better performance.
While with active sampling, prototypical networks dominate
until around iteration 60, at which point the LR model takes
over given more positive examples.

Previous work [25] found a similar result that the algorithm
specifically designed for few-shot learning outperforms other
approaches in the standard few-shot regime while simple trans-
fer learning approach becomes more effective when the number
of support examples increases. This trend also matches our pre-
vious result that no one model dominates between few-shot and
mid-shot regimes. For real-world applications, we can choose
one model over the other based on desired annotation effort or
design a model switching mechanism to take advantage of both
models in different regimes.

4.4. Different sampling windows

Figure 5 shows how different sampling windows affect model
performance and generalizability. To get more evident trends,
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Figure 4: Mean F-measure (left) and total positive examples
(right) at each sampling iteration for prototypical networks and
LR model with different inference sampling strategies.
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for prototypical networks (left) and LR model (right).

we look at model performance after 100 sampling iterations.
The results show two general trends. First, given a model, a
sampling strategy, and a sampling window, the model performs
better on data in the past than on data in the future. This matches
our intuition that the model generalizes better to data it has ac-
cess to (at least part of it) during the sampling process.

Second, given a model, a sampling strategy, and a test data
set, the larger temporal window of sampling results in higher
performance (except for the LR model with random sampling).
However, there are two competing factors here. A smaller sam-
pling window likely has less diverse examples but a higher ratio
of positive examples since we start the sampling window around
the mode of the prior distribution of each test class. The results
in Figure 5 indicate that these two competing factors both af-
fect the LR model while example diversity might play a more
important role for prototypical networks.

5. Conclusions
In this work, we relax a common assumption in few-shot sound
event detection that a handful of examples, sampled from the
entire test set, are available at test time. We consider a real-
istic setup starting from only one support example, and pro-
pose to incorporate active learning techniques to efficiently
sample more examples to update the support set. We show
that uncertainty-based active sampling expands the support set
more efficiently and achieves better few-shot model perfor-
mance compared to random sampling. It also returns more di-
verse examples with increasing sampling iteration. Next, we
propose new training schemes for the few-shot model to address
varying number of support examples, and show how models
trained with different schemes perform differently in few-shot
and mid-shot regimes. Lastly, we show that a larger tempo-
ral window of sampling results in better few-shot model per-
formance, and the model generalizes better on historical data,
which it has access to during sampling, than the future data.
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